
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

217

Designing Dynamic Neural Network for Non-Linear
System Identification

Chandradeo Prasad

Assistant Professor, Department of CSE, RGIT,Koderma

Abstract : System identification deals with many subtleties coming up when designing,
conducting and interpreting results from such an experiment. System identification usually
means identification of dynamic systems, so when dealing with neural architectures the
emphasis will be on dynamic neuralnetworks.The purpose of this paper is to analyse and
make calculations on the collection of ideas, insights, theorems, intuitions, language and
practical experiences which constitute the art of system identification.

Abbreviations : AIC = Akaike Information Criteria, NN = Artificial Neural Networks, BPN =
Back Propagation Network, BPTT = Back Propagation Through Time, CMAC = Cerebellar
Model Arithmetic Computer , EIV = Errors In Variables, FIR = Finite Impulse Response,
MLP = Multilayer Perceptron, MOE = Mixture Of Experts, NFIR = Non-linear Finite
Impulse Response, NIC = Network Information Criterion, PCA = Principal Component
Analysis, RBF = Radial Basis Function, RTRL = Real Time Recurrent Learning, SVMs =
Support Vector Machines.

1.1 INDRODUCTION

In System Identification we are generally dealing withmathematicalmodel as opposed
tophysicalmodels. With System Identification we use dedicated experiments to find a
compact and accurate mathematical model of a dynamic system. It is frequently applied to
optimise a controller for that system with knowledge from a sufficiently accurate description
of the process. In many practical cases we have only a limited model of the dynamic
behaviour of a complex process. In other cases the important parameters are only
approximately known. In those cases System Identification can assist to obtain the required
dynamic model.An important step in the identification procedure is the estimation of the
parameters in the model. As will be discussed, System Identification will focus on a special
class of systems and accompanying models. In these lecture notes the term Parameter
Estimation will be used for more general cases, including non-linear systems. Furthermore,
the models will have a clear physical background and hence the parameters involved have a
physical meaning.Parameter Estimation will also be used to find models of dynamic systems
from experimental data, but it will typically be used in combination with a physical model.
Hence the obtained parameters should represent certain physical properties of the system
being examined. The models may be linear as well as non-linear. It will be shown that the
linearity of the model (or the system being examined) is not the main reason for the
complexity of the parameter estimation. More precisely, it may be possible to derive a set of
equations for a non-linear system that is linear-in-the-parameters . In that case, a
straightforward procedure can be applied to uniquely determine the “best” parameter set. In
reverse, even a linear system can easily give rise to equations that are non-linear-in-the-
parameters and non-linear optimisation techniques have to be applied. As outlined above, we
will deal mostly with dynamic systems, which means that the time dependency of the signals

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

plays an important role. It also means that the models describing the systems will include
differential equations in which time derivatives (or their discrete time equivalent differences)
are present. Nevertheless are the applied techniques closely related to curve fitting techniques
that are commonly applied to match experimental data and non-dynamic models, i.e. models
in which the time does not play a role. Examples will include such curve fitting as well.

1.2 DYNAMIC NEURAL NETWORKS

An Artificial Neural Network (ANN) is a mathematical model that tries to simulate the
structure and functionalities of biological neural networks. Basic building block of every
artificial neural network is artificial neuron, that is, a simple mathematical model or function.
Such a model has three simple sets of rules: multiplication, summation and activation. At the
entrance of artificial neuron the inputs are weighted which means that every input value is
multiplied with individual weight. In the middle section of artificial neuron is sum function
that sums up all weighted inputs and bias (Figure1). Artificial neural network is a method of
information processing, which is developed by the biological neural systems inspired. Based
on the learning sample process, the artificial neural network analyzes the data mode, builds
the model and then finds some new knowledge. Neural network can automatically adjust the
neurons input and output in accordance with the rules through learning, to change the internal
state.

In black box system identification, however, the really important task is to build models for
dynamic systems. In dynamic systems the output at a given time instant depends not only on
its current inputs, but on the previous behaviour of the system. Dynamic systems are systems
with memory.

There are several ways to form dynamic neural networks using static neurons. Storage
elements can be used in different parts of a static network. For example, some storage
modules can be associated with each neuron, with the inputs or with any intermediate nodes
of a static network. As an example a feed-forward dynamic network can be constructed from
a static multi-input − single-output network (e.g., from an MLP or RBF) if a tapped delay line
is added as shown in Figure 1.1. This means that the static network is extended by an
embedded memory, which stores the past values of the inputs.

Multi-input single-output

 X(k)
 Input

 X(k)

 X(k-1) y(k)

 X(k- N) Output

Figure 1.1 Feed-forward dynamic neural network architecture.

T
L
D

Multi-input
single-output
static network

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

If the tapped delay line is used in the output signal path, a feedback architecture can be
constructed, where the inputs or some of the inputs of a feed-forward network consist of
delayed outputs of the network. The resulted network is a recurrent one. A possible
architecture where tapped delay lines are used both in the input and in the output signal paths
is shown in Figure 1.2.

Multi-input single output

 X(k)
 Input

 X(k)

 X(k-1)

X(k- N)

 Output y(k)

 y(k-2)

 . y(k-1)

Figure 1.2: A dynamic neural architecture with feedback.

A further possibility to construct dynamic neural network is to combine static neural
networks and dynamic linear networks. Within this approach both feed-forward and feedback
architectures can be defined as proposed by Narendra . In Figure 1.3 some combined
architectures are shown. There is a model structure called Wiener – Hammerstein model,
which is similar to model (b) except that a static nonlinear system is placed between two
linear dynamic ones.

T
L
D

Multi-input
single-output
static network

D

L

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

 x v y x

 (a) model (b) model

 + +

 (c) model (d) model

Figure 1.3: Combined dynamic neural architectures.

1.4 Designing dynamic model structures

In nonlinear system identification, a much more general approach can be followed. In this
approach – similarly to the building of linear dynamic black box models – general nonlinear
model structures can be designed. In these dynamic model structures a regressor vector is
used, and the output of the model is described as a parameterized function of this regressor
vector :

 yM(k)=f(Θ,ϕ(k)) (1)

 where Θ is the parameter vector and ϕ(k) denotes the regressor vector. The regressor can be
formed from past inputs, past system outputs, past model outputs etc. according to the model
structure selected. The following regressors are defined: When only the past inputs are used
the regressor is formed as:

 ϕ(k)=[x(k-1),x(k-2),…..,x(k-N)] (2)

Based on this regressor, a feed-forward nonlinear model structure can be constructed. This
model - similarly to its linear counterpart - is called an NFIR model. An NFIR model does
not contain feedback so it cannot be unstable using any parameter vector. This is the simplest
case of regressor-based architectures.

 ϕ(k)=[x(k-1),x(k-2),…..,x(k-N),y(k-1),y(k-2),…..,y(k-P)] (3)

If both past inputs and system outputs are used in the regressor, the NARX model can be
constructed. This model is often called series-parallel model, as it uses a feedback. The
regressor can be formed from the past inputs and past model outputs

 ϕ(k)=[x(k-1),x(k-2),….. ,x(k-N),yM(k-1),yM(k-2),….. , yM (k - P)] (4)

N

(w)

H

(z)

Nl

(wl)

N2

(w2)

N

(w)

H

(z)

Nl

(wl)

N2

(w2)

H

(z)

∑ ∑

H

(z)

y

y

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

221

The corresponding structure is the NOE model. In a NOE model there is a feedback from
model output to its input, so this is a recurrent network. Sometimes NOE model is called as
parallel model. Because of its recurrent architecture serious instability problem may arise. In
the NARMAX model the past inputs, the past system outputs and the past model outputs are
all used. Usually the past model outputs are used to compute the past values of the difference
between the outputs of the system and the model,

ε(k-i)=y(k-i)-yM(k-i), i=1,2,…..,L (5)

so the regressor is as follows:

ϕ(k)=[x(k-1), x(k-2),…..,x(k- N), y(k-1), y (k -2), ….. , y(k-P), ε(k-1), ….. , ε(k–L) (6)

The regressor for the NBJ models is formed from past inputs, past model outputs and the past
values of two different errors, ε and ε x. Here ε is defined as before, while εx is

 εx(k-i)=y(k-i)-yMx(k-i), i=1,2,…..,K (7)

 In this equation yMx(k-i) is the model output when only the past inputs are used. The
corresponding regressor is

ϕ(k)=[x(k-1),…..,x(k-N),yM(k-1),….,yM(k-P),εx(k-1),….,εx(k–l),….., εx(k – K) (8)

Although the definitions of these general model classes are different from the definition of
the classical dynamic neural architectures, those structures can be classified according to
these general classes. For example, an FIR-MLP is an NFIR network, but the combined
models (a) and (b) in Figure 1.3 also belong to the NFIR model class.

1.5 Neural network training

In neural networks the estimation of parameters, the determination of the numerical values of
the weights is called learning. Learning is an iterative process. When the weight values of the
network are adjusted step by step, we can achieve the best fit between observed data and the
model.

1.5.1 Training of dynamic networks

Dynamic networks are sequential networks, which means that they implement nonlinear
mapping between input- and output data sequences. So the training samples of input–output
data pairs of static networks are replaced by input–output data sequences and the goal of the
training is to reduce a squared error derived from the elements of the corresponding error
sequences. If ε(k) is the output error of a dynamic network at discrete time step k, the squared
total error can be defined as:

 εtotal=∑ ε
ୀଵ

2(k)2 (9)

where k denotes the length of the sequence. Dynamic networks have memory, and this needs
significant modification of the training algorithms. The basic training rules for dynamic

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

systems are gradient-based algorithms. Here the weights are modified only after a whole
training sequence were applied to the network. This will let the network be unchanged during
a whole training data sequence is applied. The most important family of learning rules
appropriate for dynamic networks is called dynamic backpropagation. For feed-forward
networks a possible approach is to unfold the network in time. This strategy first removes all
time delays in the network by expanding it into an equivalent static network. A more
efficient learning for such network as an FIR-MLP is the temporal backpropagation. For
recurrent networks two different approaches are applied . The first one uses also unfolding in
time, which means that a recurrent dynamic network is transformed into a corresponding
feed-forward static one. This transformation maps the neurons with their states at every time
step into a new layer, where the number of resulting layers is equal to the length of the
unfolding time interval. In the unfolded network all weights of the original recurrent network
are repeated in every layer. The resulted static network are trained by standard
backpropagation rule, except that these weights are physically identical and should be
modified by the same value in one training step. The unfolding-in-time approach is called
backpropagation through time (BPTT). BPTT can be explained most easily in an example.
Figure 1.4 (a) shows a simple recurrent network with only two neurons.

Suppose that a four-length input sequence is used, the corresponding unfolded feed-forward
static network is shown in Figure 1.4 (b). The two networks are equivalent for these four
steps.

 x(1) x(2) x(3)

w11

x(k) w11 w11 w11

w21 w12 w21 w21 w21

 w12 w12 w12

 w22 w22 w22

 k1 k2 k3 k4

 w22 y(1) y(2)
 y(3)

 (a) (b)

Figure 1.4 : Unfolding-in-time for a simple recurrent network

a) original recurrent network, b) unfolded static feed-forward network

PE1 PE1
1

PE2

PE1
2 PE1

3 PE1
4

PE2
1 PE2

2 PE2
3 PE2

4

y(4)

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

223

1.6. Model validation

We need to build an accurate model of the system in the whole operating range of interest.
An important feature of a model is that it can approximate well the behaviour of a system not
only at the training points, but in the whole operating range. This feature is called
generalization.

 A neural network without any generalization can only memorize the training points, so it
works as a simple lookup table. Validation is used to estimate the performance of the model,
to check its generalization capability. Validation serves several sub-goals. There are
validation methods to check if model complexity was selected properly, and there are
validation methods what can be used in the learning phase. The adequacy of the selected
model class and model size can be determined only after model parameters are also
determined. A model of proper complexity is used if both the model class and the model size
(model order, the number of free parameters) are chosen appropriately. A proper model class
can be selected either using prior knowledge about the system, or - according to the principle
of parsimony - we have to select as simple model class as possible. For model size selection
there are general validation methods used in linear or nonlinear system identification and
there are special ones developed for neural networks.

Several different validation methods are used. Among them there are methods, which are
used for both purposes: to check model complexity and check model parameters. It is well
known, that the more complex model is used the better approximation can be reached at the
training points. The reason is that increasing the number of the parameters the degree of
freedom will be increased, which means that we can adjust the model parameters to fit the
training data more. However, reducing the training error does not reduce necessarily the error
at different points obtained from the same problem, but not used in training, so reducing the
training error does not mean to get better generalization. For checking the generalization
capability of the model we need a set of test data from the same problem, a test set, which is
not used in training. Using different data sets for constructing a model and for validating it is
an important principle. The validation method based on this principle is called cross-
validation and it has a distinguished role in neural modelling. The effect of model complexity
on the performance of the model can be followed in Figure 1.5. It shows the training and test
errors versus model complexity. The performance is measured as usual, e.g., they are the sum
of the squared errors at all training-points and at all test-points, respectively. It can be seen
that as model complexity increases first both the training and the test errors decrease. This
behaviour can be found until we reach a given complexity. From this point the lowering of
the training error goes on, while test error is getting larger. A model of optimal complexity, a
model with the best generalization property is obtained at the minimum point of the test error.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

C

Text Error

Training Error

 Model Complexity (Size of the network)

 Best model complexity

Figure 1.5 Training and test error versus model complexity

Optimal model complexity is the bias-variance trade-off. The modelling error is the sum of
the squared errors or the average of the squared error

 MSEemp(Θ)=
ଵ

∑ ሺεሺ
ୀଵ k))2=

ଵ

∑ ሺyሺ	kሻ		
ୀଵ -yM(k))2 (10)

where ε(k) can be written in a more general form

ε(k)=yk-yM(ϕ(k),Θ) (11)

This error definition is valid for all model structures: if ϕ(k) = x(k). Now, consider the limit
in which the number of training data samples goes to infinity, the average of the squared error
approximates the mean square error, the expected value of the squared error, where
expectation is taken over the whole data set.

 MSE(Θ)=E{y-yM(Θ))2} (12)

 This expression can be decomposed as:

 MSE(Θ)=E{y-yM(Θ))2}= E{(yM(Θ)–E{yM(Θ)}2}+(y-E{yM(Θ)})2 (13)

 Here the first term is the variance and the second one is the squared bias.

 MSE(yM(Θ))=var(yM(Θ))bias2(yM(Θ)) (14)

The size of the model, the model order will have an effect on the bias-variance trade- off. A
small model with fewer than enough free parameters will not have enough complexity to
represent the variability of the system's mapping, the bias will generally be high, while the
variance is small. A model with too many parameters can fit all training data perfectly, even

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

if they are noisy. In this case the bias term vanishes or at least decreases, but the variance will
be significant.

Model complexity (number of parameters) Best model complexity

1

 MSE

 Variance

 Bias2

 Model Complexity (Size of the network)

 Best model complexity

Figure 1.6 : Illustration to the bias-variance trade-off.

In dynamic models, a proper size of the selected model class must be determined at first.
Moreover, it can be shown that the selection of the proper model complexity cannot be done
independently from the number of available training data samples. There must be some
balance between model complexity and the number of training data. The less training points
are used, the less knowledge is available from the system and the less free parameters can be
used to get a model of good generalization. Of course model complexity must reflect the
complexity of the system, more complex systems need more data, which allows building
more complex models: models with more parameters.

1.6.1 Model order selection for dynamic networks

A new heuristic method is proposed for identifying the orders of input-output models for
unknown nonlinear dynamic systems . This approach is based on the continuity property of
the nonlinear functions, which represent input-output mappings of continuous dynamic
systems. The interesting and attractive feature of this approach is that it solely depends on the
training data. The model orders can be determined using the following index:

Q(N)=∏ √݊
ିଵ q(N)(k)1 ܲ⁄ (15)

where q (N) (k) is the k-th largest Lipschitz quotient among all qij (i ≠ j; i, j = 1, 2, … , P) . N
is the number of input variables and p is a positive number: usually 0.01P - 0.02P. Here the
qij Lipschitz quotient is defined as:

qij=
|௬ሺሻି௬ሺሻ|

|	௫ሺሻି௫ሺሻ|
 (16)

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

where the {x(i), y(i)} i=1, 2, … , P pairs are the measured input-output data samples from
which the nonlinear function f(.) have to be reconstructed. This index has the property that
1+q(N) is very close to q(N) , while 1−q(N) is much larger than q(N) if N is the optimal number
of the input variables, so a typical curve of q(N) versus N has a definite point (N0) where the
decreasing tendency stops and q(N) enters a saturated range. For an NFIR model N0 is the
optimal number of input order. Figure 1.7 (a) shows a typical curve for q(N) .

q(N) q(N)

N0 N

(a) (b)
Figure 1.7 : Typical curves of Lipschitz indexes (a) for noiseless data or data with low noise

level, (b) for data with high noise level.

The Lipschitz index can be applied not only for NFIR structures but also for NARX model
classes, where two, the order of the feed-forward and the feedback paths must be determined.
For NARX model class

yM(k)=f(ϕ(k))=f[x(k-1),x(k-2),…,x(k-M),y(k-1),y(k-2),….,y(k-L)] (17)

 the following strategy is used. The Lipschitz index q(N) = q(L-M) are computed for different
model orders, where L denotes the feedback and M the feed-forward order values. Starting
with N=1, where only y(k-1) is used as input q(1+0) can be computed. Then let N = 2, where
the both x(k-1) and y(k-1) are used as inputs and q(1+1) can be computed. For N=3 the third
input of the dynamic networks will be y(k-2) and q(2+1) will be computed. This strategy can
be followed increasing step by step the feedback and the feed-forward orders. If at a given L
and M one can observe that q(L+M) is much smaller than q(L-1+M) or q(L+M-1) , but is very
close to q(L+1+M) or q(L+M+1) , we reached the appropriate order values. The most important
advantage of this method is that it can give an estimate of the model order without building
and validating different complexity models, so it is a much more efficient way of order
estimation then the criteria based approaches. However, there is a significant weakness of the
Lipschitz method: it is highly sensitive to observation noise. Using noisy data for model
construction - depending on the noise level - we can often get a typical curve for the

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

227

Lipschitz index as shown in Figure 1.7 (b). The most important feature of this Figure is that
there is no definite break point.

1.6.2 Cross-validation

Modelling error can be used in another way for model validation. This technique is called
cross-validation. In cross-validation – as it was mentioned before - the available data set is
separated into two parts, a training set and a test set. The basic idea of cross-validation is that
one part of the available data set is used for model construction and another part for
validation. Cross-validation is a standard tool in statistics and can be used both at the model
structure selection and at parameter estimation. Here its role in the training process will be
presented. The previous validation techniques for selecting the proper model structure and
size are rather complex, computation intensive methods. This is the most important reason
why they are applied only rarely in practical neural model construction. The most common
practical way of selecting the size of a neural network is the trial and error approach. First a
network structure is selected, and then the parameters are trained. Cross-validation is used to
decide whether or not the performance of the trained network is good enough. Cross-
validation, however, is used for another purpose too. As it was mentioned in the previous
section to determine the stopping time of training is rather difficult as a network with quite
large number of free parameters can learn the training data almost perfectly. The more
training cycles are applied the smaller error can be achieved on the training set. However,
small training error does not guarantee good generalization. Generalization capability can be
measured using a set of test data consists of samples never seen during training. Figure 1.8
shows two learning curves, the learning curves of the training and the test data. It shows, that
usually the training error is smaller than the test error, and both curves decrease
monotonically with the number of training iterations till a point, from where the learning
curve for the test set starts to increase. The phenomenon when the decrease of the training
error is going on, while the test error starts to increase is called overlearning or over fitting. In
this case the network will memorize the training points more and more while at the test points
the network's response is getting worse, we get a network with poor generalization.
Overlearning can be avoided if training is stopped at the minimum point of the test learning
curve. This is called early stopping and it is an effective way to improve the generalization of
the network even if its size is larger than required. For cross-validation we need a training set
and a test set of known examples. However there is a question which must be answered: in
what ratio, the data points should be divided into training and testing sets in order to obtain
the optimum performance. Using statistical theory a definite answer can be given to this
question . When the number of network parameters M is large, the best strategy is to use

almost all available known examples in the training set and only
ଵ

√ଶெ
 examples in the testing

set, e.g., when M = 100, this means that only 7% of the training data points are to be used in
the test set to determine the point for early stopping. These results were confirmed by large-

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

228

scale simulations. The results show that when P > 30M cross-validation is not necessary,
because the generalization error becomes worse by using test data to obtain adequate
stopping time. However, for P < 30M, i.e. the number of the known examples is relatively
small compared to the number of network parameters, overtraining occurs and using cross-
validation and early stopping improves generalization. Cross-validation can be used not only
for finding the optimal stopping point, but to estimate the generalization error of the network
too. In network validation several versions of cross-validation are used. A version called
one-leave-out cross-validation is used, especially if the number of known data is small. The
one-leave-out cross-validation is an efficient way of using the examples available. Here we
divide the set of examples into two sets as it was proposed before, but only one example will
be omitted from the training set and this point will be used for testing. The process will be
repeated P times, every time a different example is omitted for testing. Such a procedure
allows us to use a high proportion of the available data (all but one) to train the network,
while also making use of all data points in evaluating the cross-validation error. The
disadvantage of this method is that it requires the training process to be repeated P times.

Figure 1.8: Learning curves for the training and the test data.

7. Conclusions

This paper shows that neural networks are general black box modelling devices, which have
many attractive features: they are universal approximates, they have the capability of
adaptation, fault tolerance, robustness, etc. For system modelling several different dynamic
neural architectures can be constructed, so neural architectures are flexible enough for a
rather large class of identification tasks. The construction of neural models - as they are black
box architectures - is mainly based on measurement data observed about the system. This is

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

229

why one of the most important parts of black box modelling is the collection of as much
relevant data as possible, which cover the whole operating range of interest. All these
problems need proper pre-processing, the importance of which cannot be overemphasized.
Moreover, according to the experiences obtained from real-world modelling tasks, prior
information and any additional knowledge to the observation has great importance. Prior
information helps us to select proper model structure, to design excitation signal if it is
possible to use excitation signals at all, to determine the operating range where valid model
should be obtained, etc.

REFERENCES

[1] L. Ljung, System Identification - Theory for the User. Prentice-Hall, N.J. 2nd edition,
1999.

 [2] J. Schoukens and R. Pintelon, System Identification. A Frequency Domain Approach,
IEEE Press, New York, 2001.

 [3] T. Söderström and P. Stoica, System Indentification, Prentice Hall, Enhlewood Cliffs,
NJ. 1989.

 [4] P. Eykhoff, System Identification, Parameter and State Estimation, Wiley, New York,
1974.

 [5] A. P. Sage and J. L. Melsa, Estimation Theory with Application to Communications and
Control, McGraw-Hill, New York, 1971.

 [6] H. L. Van Trees, Detection Estimation and Modulation Theory, Part I. Wiley, New York,
1968.

 [7] G. C. Goodwin and R. L. Payne, Dynamic System Identification, Academic Press, New
York, 1977.

 [8] K. Hornik, M. Stinchcombe and H. White, Multilayer Feed-forward Networks are
Universal Approximators", Neural Networks Vol. 2. 1989. pp. 359-366.

 [9] G. Cybenko, Approximation by Superposition of Sigmoidal Functions, Mathematical
Control Signals Systems, Vol. 2. pp. 303-314, 1989.

 [10] K. I. Funahashi, On the Approximate Realization of Continuous Mappings by Neural
Networks", Neural Networks, Vol. 2. No. 3. pp. 1989. 183-192.

 [11] M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, Multilayer Feed-forward Networks
With a Nonpolynomial Activation Function Can Approximate Any Function, Neural
Networks, Vol. 6. 1993. pp. 861-67

[12] J. S. Albus, A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC), Transaction of the ASME, Sep. 1975. pp. 220-227.

 [13] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley,
Reading, Mass., 1989, pp. 197-222.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

230

 [14] D. F. Specht, Polynomial Neural Networks, Neural Networks, Vol.3. No. 1 pp. 1990.
pp. 109-118,

[15] J. Park and I. W. Sandberg, Approximation and Radial-Basis-Function Networks,
Neural Computation, Vol 5. No. 2.

[16]David E Goldberg, „Genetic algorithms in search, optimization and machine learning‟,

Addision‐ Wesley Pub.Co.1989.

[17]C.E.Shannon, “Communication Theory of Security System”,Bell,System Technical

Journal, 28, 1949

[18]A.J.Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, School of

Information Systems, University Of East Anglia, 1996.

[19]N.Koblitz , „A Course in Number Theory and Cryptography‟, Springer‐Verlag, New York,

Inc., 1994.

 [20]Menzes A. J., Paul, C., Van Dorschot, V., Vanstone, S. A., “Handbook of Applied

Cryptography”, CRS Press 5th Printing; 2001.

[21]National Bureau Standards, “Data Encryption Standard (DES),” FIPS Publication 46; 1977

[22]Tragha A., Omary F., Mouloudi A.,”ICIGA: Improved Cryptography Inspired by Genetic

Algorithms”, Proceedings of the International Conference on Hybrid Information Technology

(ICHIT'06), pp. 335‐341, 2006.

[23]Spillman R,Janssen M, Nelson B and Kepner N, “Use of Genetic Algorithm in

Cryptanalysis of Simple Substitution Cipher” Cryptologia, Vol.17, No.4, pp. 367‐ 377, 1993.

[24]Spillman R,”Cryptanalysis of Knapsack Ciphers using Genetic Algorithms”, Cryptologia,

Vol.17, No.4, pp. 367‐377, 1993.

[25]Garg Poonam, Genetic algorithm Attack on Simplified Data Encryption Standard

Algorithm, International journal Research in Computing Science, ISSN1870‐4069, 2006.

[26]Nalini, Cryptanalysis of Simplified data encryption standard via Optimization heuristics,

International Journal of Computer Sciences and network security, vol 6, No 1B,Jan 2006. 2nd

National Conference in Intelligent Computing & Communication

Organized by Dept. of IT, GCET, Greater Noida, INDIA. ISBN: 9788175157538

[27] L. Ljung, System Identification - Theory for the User. Prentice-Hall, N.J. 2nd edition,
1999.

 [28] J. Schoukens and R. Pintelon, System Identification. A Frequency Domain Approach,
IEEE Press, New York, 2001.

 [29] T. Söderström and P. Stoica, System Indentification, Prentice Hall, Enhlewood Cliffs,
NJ. 1989.

 [30] P. Eykhoff, System Identification, Parameter and State Estimation, Wiley, New York,
1974.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January 2015.

www.ijiset.com

ISSN 2348 – 7968

231

 [31] A. P. Sage and J. L. Melsa, Estimation Theory with Application to Communications and
Control, McGraw-Hill, New York, 1971.

[32] H. L. Van Trees, Detection Estimation and Modulation Theory, Part I. Wiley, New
York, 1968.

 [33] G. C. Goodwin and R. L. Payne, Dynamic System Identification, Academic Press, New
York, 1977.

