
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

A Software defects detection and prevention through virtualization.

Jean Paul TURIKUMWE1, Dr. Cheruiyot W.K2 and Dr. Anthony luvanda3

Abstract

Software defects detection and prevention is an important
practice which needs to be adopted by software developers as it
is an important indicator for software quality and efficiency.
In this thesis, we have investigated the existing approaches for
memory leak detection, both automatic and manual, and
proposes a novel lightweight approach for automatic memory
leak detection, utilizing monitoring capabilities and
programming interfaces of modern Java Virtual Machines using
application virtualization technology. The results of test on
multiple applications showed that a considerable part of them
presented different level of memory leak problems.

Our work has extended to analyzing the root cause of the
memory leaks. In the taken sample projects, we had discovered
the causes which was the root problem of memory leak. These
cause was related to loaded Drivers which kept in memory
unused open connection, DriverManager which was not
unloaded on redeploys and other unnecessary resource references.
Using the developed pattern, we came on eliminating the
memory leak problem and the application was smoothly running
with the minimal assigned heap.

Keywords: Software defects, memory leak, lightweight,
application virtualization.

1. Introduction

Software bug can arise in software and their results
affect the software quality, incur additional cost if the
software is not rejected at its early stage. Bug also called
defect is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or
unexpected result, or to behave in unintended ways.
Corrective measures need to be identified to prevent these
bug for avoiding them to happen in future. Several
prevention technics has been developed and their strength
are proportional to software development stage or the
nature of the software.

Application virtualization is an umbrella term that
describes software technologies that improve
portability, manageability and compatibility of
applications by capsulizing them from the underlying
operating system on which they are executed.

A fully virtualized application is not installed in the

traditional sense, although it is still executed as if it were.
The application is fooled at runtime into believing that it is
directly interfacing with the original operating system and
all the resources managed by it, however in reality it is not
[1].

Thomas Zimmermann on Predicting Bugs from
History shown that, the history of successes and failures is
provided by the bug database: systematic mining uncovers
which modules are most prone to defects and failures.
Correlating defects with complexity metrics or the
problem domain is useful in predicting problems for new
or evolved components. Likewise, code that changes a lot
is more prone to failures than code that is un-changed [2].

Edgar H. Sibley, after analyzing two software module

one modified due to that it contained errors and a new
developed module. He found that Modified and new
modules were shown to behave similarly except for the
types of errors prevalent in each and the amount of
effort required to correct an error. Both had a high
percentage of interface errors [3].

Garbage collection is the process of looking at heap

memory, identifying which objects are in use and which
are not, and deleting the unused objects. An in use object,
or a referenced object, means that some part of your
program still maintains a pointer to that object. An unused
object, or unreferenced object, is no longer referenced by
any part of your program. So the memory used by an
unreferenced object can be reclaimed [4].

194

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

1. Motivation

The approach of detecting the leaks related defect

developed, will help in improving application efficiency
before their deployment and their upgrade as well.
Developers who doesn’t consider the software defects
which are related to memory and their respective heap size,
will benefit this approach and an improved awareness on
these defects is considerable.

2. JVM Heap size

 According to JDK6U18, In the Client JVM, the
default Java heap configuration has been modified to
improve the performance of today's rich client
applications. Initial and maximum heap sizes are larger
and settings related to generational garbage collection are
better tuned [5].

 The default maximum heap size is half of the
physical memory up to a physical memory size of 192
megabytes and otherwise one fourth of the physical
memory up to a physical memory size of 1 gigabyte.

 The maximum heap size is not actually used by the
JVM unless the program creates enough objects to require
it. A much smaller amount, termed the initial heap size, is
allocated during JVM initialization. This amount is at least
8 megabytes and otherwise 1/64 of physical memory up to
a physical memory size of 1 gigabyte.

3. Experimental leak analysis

 To illustrate different memory leak case, I have used
Plumbr which an online tool for memory leak detection.
We have used this commercial tool because it has many
features which allows to monitor a running application.

 That tool detect memory usage during the execution
and same technique was used as during this case studies.
The application initialization time was recorded and was
set to 2 minutes fall all application in the case study. We
have set the heap size to 100 MB for all application during
the test case. Memory usage graphs cover all 14 selected
java application, whereas execution time was analyzed
separately from all runs.

Used memory with their respective heap size are

summarized in Table 1. The constant heap size of sunflow
is due to that it was not presenting the memory leak
problem up to the testing time. The large Heap size of
Bonita BPM, is due to that it was presenting a high
increasing speed of used memory size. To allow the
application to keep running, we forced the JVM to
reallocate the memory. The application may not show the
memory leak problem due that the codes of the performed
operation is was highly controlled to not cause the
memory leaks. The results obtained are summarized as
below with S and H representing used memory size and
allocated heap size respectively

Time(Sec) 120 160 200 240

Applicatio
n

S H S H S H S H

EasyChurch 10 100 175 200 440 490 510 610

Bonita
BPM

40 100 320 420 630 670 650 705

MATSim 25 100 230 300 520 610 510 640

Convertigo 70 100 125 205 310 350 450 490

Subsonic 90 100 190 290 340 390 350 420

Biogenesis 25 100 165 210 270 320 320 430

sunflow 40 100 45 100 40 100 40 100

sashimi 25 100 180 230 290 320 340 455

MindRaider 35 100 60 90 230 300 220 320

Jena 15 100 330 420 435 515 610 690

Table 1. Java application memory usage with

Plumbr

As per the this result, some of these application behaviours
are illustrate with the following charts

195

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

 Fig 1 EasyChurch used memory vs Heap size

 As per this chart, the case of EasyChurch shows that it
has using the maximum allocated heap size. After the 240
seconds, the application frozen throwing OOM message
and the application crashed.

Fig 2 Sunflow used memory vs Heap size

 This case of sunflow, shows that the application was
running smoothly with the allocated heap memory.
Normally the memory usage of an application depends on
the process in execution.

4. Memory leak diagnostic

To investigate the memory problem for the case of
EasyChurch application, we used NetBeans Profiler to
determine the root cause of the issue. NetBeans has a built
in tool called Profiler which has several options to monitor
the resource usage. This Profiler provides a view called
the Runtime Heap Summary that shows the amount of

heap memory in use over time as the Java application is
running. It also provides a toolbar button to force the JVM
to perform garbage collection when desired. This
capability turned out to be very useful when trying to see
if a given instance of a class would be garbage collected
when it was no longer needed by the Java application. The
fig 3 shows the performance of EasyChurch application
during profiling

In the Heap Usage Chart, the Purple color indicates

the used memory and the red one indicate the amount of
heap space that has been allocated. After lunching the
profile module, the application was running without any
problem and the used memory was varying between 0
Megabyte and 80 Megabyte which is very normal
compared to the application size after performing some
operations. The memory leak manifested on creating
income operation which was not well controlled on the
coding time.

Fig 3 Profiling EasyChurch application

The memory leak situation occurred when the
programmer after opening the JDBC connection and
started querying the database. The JDBC query code was
completely correct according to the logic flow. The cause
of the memory leak was due to the thrown exception and
active JDBC objects which left unclosed that led the
application on being unreliable, overloading the database
server and using more memory than it needs. The other
cause of the memory leak was due to that the programmer

196

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

wanted to put extracted record to a HashMap with
checking that there was fetched records while the fetch
record returns a Boolean which is true always there are
some records.

5. Memory leak fix

The found error related to memory leak can be
summarised in the following categories:

• MySQL drivers launching background threads
• java.sql.DriverManager not unloaded on

redeploys
• HashMap when checking that there was fetched

records while the fetch record returns a Boolean
which is true always there are some records

The first step need to stop the MySQL loaded drivers.

Apparently the most common MySQL drivers launches a
thread in the background cleaning up unused and unclosed
connections.

After stopping the loaded drivers, the catch is that the

context ClassLoader of this newly created thread in the
application ClassLoader. Which means that while this
thread is running and the application was trying to run
other thread threads, its ClassLoader is left dangling
behind with all the classes loaded in it.

As that step is not enough, we need to proceed with

implementing the cleanLoaded() method, which the
developer should know to invoke before closing the
process under execution. There is a good place for such
cleanLoaded hooks in Java web application, which are
namely the ServletContextListener class contextDestroyed()
method.

This such function can be invoked every time the

servlet context is destroyed on the server, which most
often happens during redeploys. This approach is a
practice of most java developer, but a number of them
don't care on cleaning up this particular hook and their
application remains unstable.

Another approach to discover the issue can be related

to datasource and context classloaders. Normally, once

the com.jdbc.myslq.Driver registers itself as a driver in
java.sql.DriverManager class. This needs to be done with
clear focus. With all this done, the application will be able
to figure out how to choose the right driver for each query
when connecting to the database URL.

When the DriverManager is loaded in bootstrap

classLoader instead of from web classloader application,
the developer needs to unload the driver manually from
the application. In that context, the catch is required with
cleanLoaded() call and it will be redeployed by the
application itself.

For developer, there isn't a perfect general method to

unregister the loaded driver. The class which references
the one which want to unregister the drivers is hidden
from the developer. In this context, developer needs to
know all registered JDBC drivers with DriverManager in
order to decide the ones to unregister.

For the case of HashMap, normally A HashMap

object occupy 32 * SIZE + 4 * CAPACITY bytes with
32(12 bytes header + 16 bytes data + 4 bytes padding),
while the theoretical map size limit could be equal to 8 *
SIZE bytes. Trove THashMap is a replacement
implementation for HashMap. Internally THashMap
contains 2 arrays – one for keys, another for values. It
means that THashMap needs 8 * CAPACITY bytes for
storage [6].

After applying these steps, we needed to run the

application following the same exact procedure was
performed previously. At this time, the application was
deployed in virtual environment provided by Cameyo. Its
technology aims to virtualize applications so that they can
run on other machines or in HTML5 browsers. The new
performance are illustrated on the figure 4

197

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

Fig 4 EasyChurch memory usage after applying the fix

 As per this figure, there is aconsiderable difference
consumed memory in comparison with the assigned
memory heap.

6. Conclusions

In this thesis, we have investigated different Java

open source projects. In the sample we have tested a part
of them had presented different level of memory leak
problems. Our work has extended to analysing the root
cause of the memory leaks. In the taken sample project,
we had discovered the causes which was the root problem
of memory leak. These cause was related to loaded
Drivers which kept in memory unused open connection,
DriverManager which was not unloaded on redeploys and
other unnecessary resource references and the HashMap
oject which was not properly managed. Using the
developed pattern, we came on eliminating the memory
leak problem and the application was smoothly running
with the minimal assigned heap.

Investigating the memory leak cause is not a direct

process and it require powerful debugging or profiling
tools. However, once you become familiar with the tools
and the patterns to look for in tracing object references,
you will be able to track down memory leaks. It is a good

practice for every time considers the Debugging tool
which consider also the memory consumption for high
performance of java application. This also provide insight
as to what coding practices to avoid to prevent memory
leaks in future projects.

Application Virtualization used in this thesis helped

in maintenance and greater portability. The facility to
deliver the tools users need quickly and reliably is core to
the concept of delivering a flexible, cost-effective and
robust workspace. Application virtualization gave facility
to deliver applications to devices which do not support
these applications. Virtualizing application does not also
helps in managing memory efficiently as it uses the
assigned memory on their serve and allows applications to
run on various version and on any systems.

Using Application Virtualization your applications

are protected, since a malicious user wanting to walk away
with your applications would not have access. Using the
application virtualisation technology in this thesis helped
us benefiting from centralised resource and applying
different tools that checks the memory leaks related
defects.

Future research include, but is not limited to,

discovering new types of performance problems, which
may be analysed in a similar way by applying the run-time
monitoring tool. Engineering research topics also include
performance optimizations for the current implementation
which would further reduce the runtime overhead that can
be very noticeable in applications exhibiting high object
allocation rates.

In addition, interpretation of the leak detection results

in the context of other dynamic programming languages
executing on the JVM, Like Groovy, C#, Python, etc. is
yet to be analysed.

References

[1] Bhathal, K. K. (2013). Computer Science and Technology

Cloud and Distributed. Trend and Need of Application
Virtualization in Cloud Computing, 2-3.

198

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November 2015.

www.ijiset.com

ISSN 2348 – 7968

[2] Tom Mens, Serge Demeyer (2008). Software Evolution.
Berlin Heidelberg: Springer. P87-88.

[3] Edgar H. Sibley. (1984). software errors and complexity: an

empirical investigation. Computing practices. 27 (1), P49-50.

[4] Oracle. (2015, July 24). Java Garbage Collection Basics.

Retrieved from oracle.com:
http://www.oracle.com/webfolder/technetwork/tutorials/obe/j
ava/gc01/index.html

[5] Oracle. (2014, January). Java SE 6 Update 18 Release Notes.

Retrieved from oracle.com:
http://www.oracle.com/technetwork/java/javase/6u18-
142093.html

[6] Java performance. (2013, July 23). Memory consumption of

popular Java data types. Retrieved from http://java-
performance.info/memory-consumption-of-java-data-types-
2/

[7] Sakthi Kumaresh and Baskaran Ramachandran. (2012).
 International Journal of Software Engineering & Applications
 (IJSEA). DEFECT PREVENTION BASED ON 5
 DIMENSIONS OF DEFECT ORIGIN. 3 (4), 9

[8] Sommerville, I. (2004). 7th Edition, Software Engineering.
 Dorling Kindersley, India, pp 139-162.

[9] ŠOR, V. (2014). Statistical approach for memory leak
 detection in Java applications. Zurich: University of Partu
 PRESS.

[10] Pan Tiejun, Zheng Leina, Fang Chengbin, (2008), “Defect
 Tracing System Based on Orthogonal Defect Classification”
 published in Computer Engineering and Applications, vol
 43, PP 9-10, May 2008.

[11] Plumbr. (2014, September 4). Memory leaks – measuring
 frequency and severity. Retrieved from plumbr.eu:
 https://plumbr.eu/blog/memory-leaks/memory-leaks-
 measuring-frequency-and-severity

[12] Schwab. (2008, April). The benefits of application
 virtualization. Retrieved from
 searchitchannel.techtarget.com:
 http://searchitchannel.techtarget.com/feature/The-benefits-
 of-application-virtualization

[13] Chris Jackson (30 Apr 2008). Can You Shim Applications
 Virtualized in SoftGrid?. [ONLINE] Available at:
 http://blogs.msdn.com/b/cjacks/archive/2008/04/30/can-

 you-shim-applications-virtualized-in-softgrid.aspx. [Last
 Accessed 31 October 2014].

[14] Stefan Wagner, 2008,”Defect Classification and Defect Type
 Revisited” Proceedings of the 2008 workshop on Defects in
 large software systems, (DEFECTS’08) pages 73-83, ACM
 Press, 2008

[15] Pan Tiejun, Zheng Leina, Fang Chengbin, (2008), “Defect
 Tracing System Based on Orthogonal Defect Classification”
 published in Computer Engineering and Applications, vol
 43, PP 9-10, May 2008.

[16] Fenton, N. E., & Neil, M. (1999). A critique of software
 defect prediction models. IEEE Transactions on Software
 Engineering, 25, 675–689.

[17] Rugina, M. O. (2012). Memory Leak Analysis by
 Contradiction. New York: Computer Science Department
 Cornell University Ithaca.

199

http://www.ijiset.com/

