ISSN 2348 - 7968

Analysis of Vertical handoff parameters using novel algorithm

Abhijit Bijwe¹, Dr. C.G.Dethe²

- Department of Electronics & Communication. Engineering., Priyadarshini Institute of Engineering &Technology, Nagpur e-mail: bijweabhijit@rediffmail.com,
 - 2. Director ,UGC-Academic staff College,RTMNU, Nagpur e-mail: cgdethe@rediffmail.com

Abstract

Seamless communication is necessary in heterogeneous networks for which vertical handover is necessary. In this paper, our main objective is to analyze handover between two WLAN, two Wimax, two UMTS networks. The vertical handover decision is taken based on the variance based algorithm, which calculates the variance of parameters such as delay, jitter, bandwidth and packet loss for various above mentioned networks and the network with most of the parameters with minimum variance is selected. This algorithm is also compared with with other algorithms such as MEW (Multiplicative experiment weighting), SAW (Simple Weighting), TOPOSIS (Technique for order preference by similarity to ideal solution) and GRA (Grey Relational Analysis). These algorithms are appropriate for different traffic classes. Simulation results for proposed novel algorithm in Matlab is discussed and compared with other Multiple attribute decision making algorithm basis of bandwidth; jitter, delay etc. are discussed in the paper. It can be seen that the proposed variance algorithm gives moderate packet delay than all the algorithms, Jitter is also is Comparatively less than other algorithms. Also, provides good bandwidth.

Keywords: SAW, TOPOSIS, GRA, MEW

I. INTRODUCTION

Access to various wireless networks such as WLAN, UMTS, Wimax etc is available to us. So there is need for switching from one wireless network to other for better services. Vertical handoff can be used for load

balancing to get high data rate etc. mechanism can support such switching and maintain the connectivity from one network to another. For this mobile devices with multiple interface card which may help in connecting to different access networks. This is called to vertical handoff which is different from horizontal handoff where the MN moves from one BS to another BS in the same network i.e. homogeneous network. The multiple interface card in mobile node can choose the access links such as wireless local area network (WLAN) IEEE 802.11, worldwide inter-operability for microwave access (Wimax) IEEE 802.16, UMTS network. There should be seamless transfer to the link which is appropriate as per the requirement e.g. for video session high data rate required. Seamless vertical handoff between heterogeneous network is expected. This can be done by using IEEE 802.21 standard (Media Independent handover) which enables vertical handoff. IEEE 802.21 creates frame work for the protocol needed for vertical handoff. Actual algorithms need to be implemented by the designer.

handoff. IEEE 802.21 creates frame work for the protocol needed for vertical handoff. Actual algorithms need to be implemented by the designer. The IEEE 802.21 standard gives link layer intelligence and other network information to higher layers in order to execute handover between different networks such as wi-fi and wi-max. The paper is organized as follows

Section 2 explains the importance IEEE 802.21 and how it can be incorporated in ns-2

ISSN 2348 - 7968

Section 3 explains about the multiple attribute decision making MADM algorithm such as TOPOSIS, MEW, SAW, GRA and how it is included at MAC layer so that the vertical handoff decision is taken depending on the traffic classes.

Section 4 gives the result and conclusion for the above algorithm on the basis of various parameters such as throughput jitter, dropping ratio, delay etc.

II. IMPORTANCE OF MEDIA INDEPENDENT HANDOVER IEEE 802.21

IEEE 802.21 provides framework for the protocol required for vertical handoff. It facilitates the seamless handover between heterogeneous network supporting different technologies. This standard provides link layer intelligence and related network information to upper layer to optimize vertical handoff[6].

IEEE 802.21 defines three types of services: Information services, Command services, Event services Information services provide multiple types of networks that exist in a given geographical area ,command services are used by higher layer to control physical ,data link and logical link layers. Event services gives changes in state and transmission behavior of physical, data link, logical link layers.

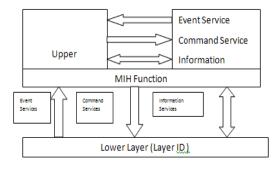


Fig 2.1 Media Independent handover

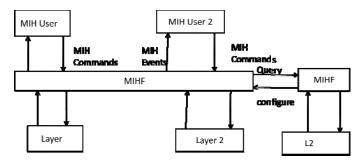


Fig 2.2 Media Independent handover frame work

III. PROPOSED VARIANCE BASED ALGORITHM Proposed algorithm is variance based algorithm which calculates the variance of parameters such as delay, jitter, bandwidth and packet loss for various above mentioned networks and the network with most of the parameters with minimum variance is selected. In our proposed algorithm, handoff metrics such as delay,

bandwidth, jitter, packet loss etc are included.

Fig 3.1 Flow chart of Proposed algorithm

www.ijiset.com

ISSN 2348 - 7968

Variance = $\frac{\sum (x-\mu)^2}{N}$ where x is any metrics such as delay, bandwidth, jitter etc and μ is its mean of a set of samples of the particular parameters. N is set of samples.

$$\begin{split} &Score_{Proposed} = &argMAX \\ &\Sigma^{N}_{i=1} 10log_{10}((delay^{2} + bandwidth^{2} + jitter^{2} + packet \\ &loss^{2}/4)/(\sigma^{2}_{delay} + \sigma^{2}_{bandwidth} + \sigma^{2}_{jitter} + \sigma^{2}_{packet \ loss})) \end{split}$$

IV. OTHER MADM ALGORITHMS USED FOR VERTICAL HANDOVER

SAW – simple additive weighting.[4]

Simple additive weighting(SAW) is the weighted sum method, where Score of each candidate network is calculated as below:

Score_{saw} =arg MAX
$$\sum_{j=1}^{N} [\mathbf{W_j} * \mathbf{N_{ij}}]$$

Where $N_{ij} = P_{ij} / max(P_{ij})$ for benefit parameters (eg: Bandwidth) $N_{ij} = min(P_{ij}) / P_{ij}$ for cost parameters (eg:delay,Jitter). Pij can be any parameter such as Bandwidth, delay, jitter, packet loss etc. With i networks and j attributes

The Score of each candidate network is found and the score with maximum value is selected

TOPOSIS – Technique for order preference by similarity to ideal solution[4]

In this algorithm ideal solution is calculated. The selected candidate network will have shortest distance to ideal solution and will have longest distance from worst case solution.

To find the rank of network we this technique follows the step as below:

- To construct normalized decision matrix consisting of various attributes such as Bandwidth, delay, Jitter, Packet loss etc N_{ii}=P_{ii}/√∑_{ii}¹ P_{ii}²
- 2. To Compute weighted normalized matrix by $V_{ij}=N_{ij}*W_{j}$

- 3. To find positive and negative ideal solution $A^{+} = \{(\max V_{ij}/jEJ), (\min V_{ij}/jEJ')\}, \\ A^{-} = \{(\min V_{ij}/jEJ), (\max V_{ij}/jEJ')\} \text{ where J is a set of benefit parameters and J' is a set of cost parameters}$
- 4. Calculate the separation distance between available networks and positive and negative ideal solutions. $S^+ = \sqrt{\sum_{j \in N} (V_{ij} V_j^+)^2}$, $S^- = \sqrt{\sum_{j \in N} (V_{ij} V_j^-)^2}$
- 5. Compute the closeness to ideal solution $C_i=S^-/(S^+ + S^-)$

$$Score_{TOPSIS} = arg \ max_{i \in M} C_i$$
 (2)

GRA(Grey relational Analysis)-

It is a technique of grey systems theory(GST) invented by Professor ju long Deng. Grey lies between black(no information) and white(full information) which means partial information. It is suitable for unascertained problems with poor information. GRA similarity between the candidate network and best ideal [4].Here, relational network grey coefficient(GRC) is calculated, before that normalization of data and defining ideal sequence. Normalization of data is done for three situations larger the better, smaller the better, nominal the best.

$$N_{ii}=P_{ii}-min(P_{ii})/(max(P_{ii})-min(P_{ii}))$$

$$N_{ij} = \max(P_{ij}) - P_{ij} / (\max(P_{ij}) - \min(P_{ij}))$$

$$N_{ij}=1-|P_{ij}-m_i|/max\{max(P_{ij})-m_i,m_j-min(P_{ij})\}$$

mj is the largest value in the nominal the best situations.

$$\Delta_i = |P_{0j} - N_{ij}|, \Delta_{max} = max_{i \in M, j \in N} \Delta_i$$

 $\Delta_{min} = min_{i \in M, j \in N} \Delta_i$

$$GRC_i = 1/m\sum_{j=1}^{m} ((\Delta_{max} + \Delta_{\min/(\Delta_i} + \Delta_{max}))$$

 $Score_{GRA} = argmax_{i \in M} GRC_i$

(3)

855

MEW –Multiplicative Exponent Weighting[4]

is the weighted product of attributes method, where $SCORE_{MEW}$ is calculated by the best values of attributes in networks.

$$SCORE_{MEW} = arg \max_{i \in M} \prod_{j=1}^{N} [\mathbf{N_{ij}}^{\mathbf{W_j}}]$$
 (4)

The best algorithm with maximum score is selected for taking vertical handoff decision.

V. RESULTS & DISCUSSION

Performance evaluation of algorithms are done using Matlab simulation ,which considers three types of network with two each of the type .The networks considered are UMTS, WLAN, Wimax .The Range of value for various parameters are as Bandwidth for UMTS network 0.1-2Mbps, Packet delay for UMTS network 25-50ms, Jitter for UMTS network 5-10ms. Bandwidth for WLAN network 1-54Mbps, Packet delay for WLAN network 100-150ms, Jitter for WLAN network 10-20ms. Bandwidth for Wimax network 1-60Mbps, Packet delay for Wimax network 60-100ms, Jitter for Wimax network 3-10ms. Here, we consider three cases as follows: 1) All Parameters are given equal weights 2) Delay, jitter are given 70% weights which suits voice connections 3) Bandwidth is given 70% weights which suits data connections. These cases are applicable to the algorithms where weights are used.

In variance based algorithm, which calculates variance of each parameter and the network having at least two or more than two parameters with minimum variance is selected. In this algorithm weights are not assigned to the parameters.

In Proposed algorithm 10 iterations are taken i.e. handoffs are taken and the network selected in each iteration is also shown in the figure below .Here,

1,2,3,4,5,6 represents UMTS1,UMTS2,WLAN1,WLAN2,Wimax1,Wimax2 respectively

In the Simulation, Comparative analysis of various algorithms such as SAW, TOPSIS, MEW, GRA, Variance based algorithms. Various graphs have been plotted on 1.Packet Delay Vs Number of Handoffs 2.Jitter Vs Number of Handoffs.

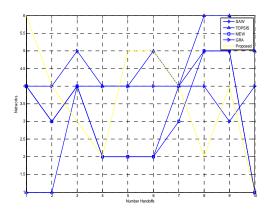


Fig 5.1 Network selection by the various algorithms

Here, the yellow lines indicate the selection of various network using Proposed algorithm which shows that initially Wimax network is selected and later on the other networks

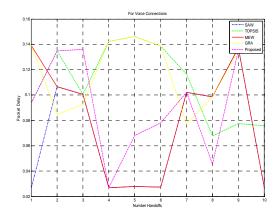


Fig 5.2 Packet delay vs number of handoffs for various algorithms

Here, the pink line indicates Packet delay for the Proposed algorithm which shows that delay is very high initially and later on it decreases except it is comparable with MEW algorithm.

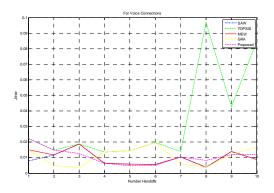


Fig 5.3 Jitter vs number of handoffs for various

algorithms

Here, the pink line indicates Jitter for the Proposed algorithm which shows that is low which makes it ideal for voice communication.

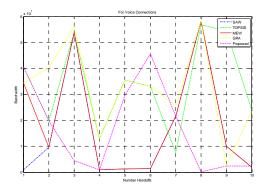


Fig 5.6 Bandwidth vs Number of handoffs

Here, the pink line indicates Bandwidth for the Proposed algorithm which shows that bandwidth is low initially and later on it increases and is high compared to other algorithms. So it also provides bandwidth in addition low jitter and moderate packet delay.

V. CONCLUSION

It is quite clear from above discussion that, the proposed algorithm has the moderate packet delay than MEW, SAW, GRA, TOPSIS algorithms. Also, it is observed that the proposed algorithm offers low jitter than other algorithms. It also provides bandwidth in addition to low jitter and moderate packet delay These two observations makes the proposed algorithm best suited for voice connections. However, the observations obtained are from the simulation results. Hence, it is recommended that for practical scenarios the proposed algorithm can be utilized to have better voice communication with video calling facility.

VI. REFERENCES

- [1] T. S. Rappport, Wireless Communications: Principles and Practice. Prentice Hall, July 1999.
- [2] S. Mohanty and I. F. Akyildiz, "A cross-layer(Layer 2 + 3) handover management protocol for next-generation wireless systems," IEEE

Trans. Mobile Computing, vol. 5, pp. 1347-1360, Oct. 2006.

- [3] Yu-Chang Chen *, Ja-Hsing Hsia, Yi-Ju Liao, "Advanced seamless vertical handoff architecture for WiMAX and WiFi heterogeneous networks with QoS guarantees," Elsevier, 2009, Pp.281-293
- [4] Enrique Stevens-Navarro and Vincent W.S. Wong "Comparison between Vertical Handoff Decision Algorithms for Heterogeneous Wireless Networks",in :IEEE 0-7803-9392-9/06 2006 Pp.947-951
- Xiaohuan Yan,.Ahmet S, ekercio glu,Sathyanarayan "A Survey of vertical Decision algorithms in fourth generation Heterogeneous networks" Elsevier, 2010, Pp. 1848-1863
- [6] HugoMarques, Jos'e Ribeiro,1 PauloMarques, and Jonathan Rodriguez, "Simulation of 802.21 Handovers Using ns-2," Hindawi Publishing Corporation Journal of Computer Systems, Networks, and Communications

Volume 2010, Article ID 794749, 11 pages

[7] N. Nasser, S. Guizani, and E. Al-Masri. Middleware vertical handover manager: A neural network-based solution. In Proceedings of the 2007 IEEE International Conference on Communications (ICC'07), pages 5671 {5676, Glasgow, Scotland, June 2007.

ISSN 2348 - 7968

[8] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J. P. Makela, R. Pichna, and J. Vallstron. Handover in hybrid mobile data networks. IEEE Personal Communications, 7(2):34-47, 2000.