
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

Security against SQL injection attacks using

AMNESIA

Shashwat Gupta

shashwat.591@hotmail.com

Saket S. Ektate

saketektate@gmail.com

Prof.Hema.K

hema53001@gmail.com

Deepak Yadav

deepakyadav_64@ymail.com

Sachin Pitrubhakt

sachin.pitrubhakt@gmail.com

 (Department of Computer Engineering, DYPCOE Savitribai Phule University of Pune, Maharashtra, India)

Abstract

In today’s world there is enormous and widespread use

of the internet and web applications. If the web application

is not secured its vulnerable to many of the command

injection attacks like SQLIA. The current approach uses

AMNESIA algorithm to detect and prevent the injection

attacks. The confidential information of the user might get

leaked from the database leading to severe losses of life

and property. This security prevents the unauthorized

access to your database and it also prevents your data

from being altered or deleted by users without the

appropriate permissions. Web applications typically

interact with a back-end database to retrieve persistent

data and then present the data to the user as dynamically

generated output, such as HTML pages on web. However,

this interaction is commonly done through a low-level API

by dynamically constructing query strings within a

general-purpose programming language like Java.

Keywords

AMNESIA, SQLIA, Hotspot, Pattern Matching, Query-

based Model, NDFA, Monitor.

I. INTRODUCTION

SQLIA (Structured Query Language Injection Attacks) is
type of code injection technique which targets the databases to
steal data from the organizations. In this kind of attack, the
attacker enters the SQL commands of meta characters or
keywords into a SQL statement through unrestricted user input
parameters to modify or change the SQL query‘s logic. It
poses the threat to all those web applications that access their
databases for its working, through SQL commands

constructed with external input data. Those web applications
which comprise of online transactions/banking and emails,
social networking sites have brought with them the scope of
computer security vulnerabilities like SQL injection attacks.
SQL injection by-passes authentication logic and provides
confidential information to the attacker. An authorized access
to confidential information by a crafted user has threatened
their authority, confidentiality and integrity. The consequences
could be such as the system could not deliver proper services
to its customers. In this paper, we present this technique,
which will act against all those malicious content and will
actively work at those hotspots where injection might occur.
This technique is a combination of both static and dynamic
type checking.

II. STUDY OF SQL INJECTION ATTACKS

There are certain hotspots in the Structured Query
Language through which attacker can penetrate through the
database. These hotspots are the target of attackers to inject
code into the database without proper authentication. Through
the SQL injection, the attacker in worst case might execute
arbitrary commands with high system privilege.

1.By-passing authentication through Tautology

Tautology is an always true condition. A website uses this
source (figure 2), which would be vulnerable to SQLIA. For
example, if a user enters―‟ OR 1=1--‖ and―‖, instead of userid
=―Raja‖ and password = ―rani‖, the resulting query is:

SELECT * from FROM User_info WHERE userid=‟‟ OR
1=1 --‟ AND password =‟‟

The database interprets everything after the WHERE token
as a conditional statement, and the inclusion of the ―OR 1=1‖
clause turns this conditional into a tautology. As a result, the
database returns the records for all users in the database. An

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

attacker could insert a wide range of SQL commands via this
exploit, including commands to modify or destroy database
tables.

2.Union Exploitation Technique

The UNION operator is used in SQL injections to join a
query, purposely forged by the attacker to the original query.
The technique allows the attacker to obtain the values of
columns of other tables. For example,

SELECT Name, Phone, Address FROM Users WHERE
Id=$id

The $id values is set as,

$id=1 UNION ALL SELECT Creditcardno,1,1 FROM

Creditcardtable

We will have the following query,

SELECT Name, Phone, Address FROM Users WHERE Id=1

UNION ALL SELECT Credircardno,1,1 FROM

Creditcardtable

The result of the forged query is joined to the original
query. The keyword ALL is necessary for the queries that use
DISTINCT keyword. Also, the other two values with
Creditcardno ―,1,1‖ are necessary because the two queries
must have an equal number of parameters(columns), in order
to avoid a syntactical error.

3.Piggybacked Queries

Query delimiters are used by exploiters to append an extra
query to the original query such as ‗;‘. The following query
will be obviously illegitimate. So attacker could inject any
SQL statement or connect to the database. For example,

SELECT accounts From users WHERE username=‘abc‘ AND
password=‘‘;drop table Users – ‗ AND pin=123

After completing the first query the database would recognize
the query delimiter (―;‖) and execute the injected second
query. The result of executing the second query would be to
drop table Users, which is likely to destroy information that
may be valuable.

4.Injection through Stored Procedures

The stored procedure is actually an abstraction layer set by
programmer. This type of attack is carried out by executing
the procedures, stored previously by the application developer.
Additionally, because stored procedures are often written in
scripting languages, they can contain other types of
vulnerabilities, such as buffer overflows, that allow attackers
to run arbitrary code on the server or escalate their privileges.

CREATE PROCEDURE DBO.isAuthenticated

 @userName varchar2, @pass varchar2, @pin int

AS

 EXEC(―SELECT accounts FROM Users

 WHERE username=‘‖+@username+‖‘ and
password=‘‖+@password+‖‘and pin=‖+@pin+);

GO

5.Blind Injection

To protect the error page to display to the attacker, the
developer hides error details and writes code to generate a
generic page to be shown to the attacker. This would make an
injection attack difficult but not impossible. Still attacker can
access the database by asking a series of TRUE/FALSE
questions through SQL commands. This type of attacks are
known as blind injection attacks. For example,

SELECT account_no FROM user_info WHERE userid=‘JAY‘
AND 1==0—AND password=AND pin=0

If the application is not secured then attacker could try the
luck and will be successful to penetrate the database.

6.Hex String attack in absence of data type checks

The developer might make an error while constructing
SQL statements by failing to check the data types of input
from the user. Database has its own type conversion
mechanism which performs the automatic conversion of the
data types. So the attacker could make use of it by encoding
HEX string

0 x 270 x 780 x 270 x 200 x 4f0 x 50- x 200 x 310 x 3d0 x 30
to parameter name. The parser at database will convert it into
varchar value which could become a tautology like ‗x‘ OR
1=1.

The escaping functions at the server‘s program mi9ght not
escape such a string because it is not in the escaping characters
list, which would result in an injection attack. The parser at the
server‘s end should be designed in such a way that not only it
escapes the special characters but it would even perform the
type conversion which can prevent SQLIA.

7.Attacks through Special Characters

The developer usually escapes such special characters which
might lead to a tautology or blind injection while designing
the parser. But, it may not be possible always for the
developer to find the full list of special characters to avoid
SQL injection attacks. Identified escaping characters like ‗ or ;
are not interpreted as SQL commands. Other unidentified
special characters will be a part of SQL commands.

III. EXISTING SYSTEMS

If we talk about the defense techniques used, then the we
have two defensive techniques namely ‗Defensive Coding‘
and ‗Runtime Monitoring‘.

Defensive coding has subdivisions like Manual Defensive
Coding practices, SQL DOM, Parameterized Query Insertion.
This defensive coding techniques ensured secure code but are
labour intensive and time consuming. Manual defensive
Coding practices are performed manually and could be done
with the help of OWASP. SQL DOM is useful in terms of

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

Figure 2: SQL Query model for Servlet in Figure 1

greater flexibility when developer wishes to use the dynamic
queries instead of parameterized one.

Runtime checking is a technique used for prevention of
illegitimate SQL statements for all types of SQLIA‘s by
checking them at the runtime. But its drawback is that it
requires a strong dynamic monitoring system.

IV. ATTACK DETECTION STRATEGY

4.1 The Technique

Our technique uses a combination of static analysis and

runtime monitoring to detect and prevent SQLIAs. It consists

of four main steps.

1. Identify hotspots.

2. Build SQL-query models

3. Instrument Application

4. Runtime monitoring

4.1.1 Identify Hotspots

This involves performing a simple scanning of the entire

application code to identify hotspots. For example, the servlet

in Figure 1, the set of hotspots would contain a single element,

the statement at line 10.

public class Show extends HttpServlet {

...

1. public ResultSet getUserInfo(String login,

String password) {

2. Connection conn =

DriverManager.getConnection("MyDB");

3. Statement stmt = conn.createStatement();

4. String queryString = "";

5. queryString = "SELECT info FROM userTable

WHERE ";

6. if ((! login.equals("")) && (!

password.equals(""))) {

7. queryString += "login=’" + login +

"’ AND pass=’" + password + "’";

8. } else {

9. queryString+="login=’guest’";

}

10. ResultSet tempSet =

stmt.execute(queryString);

11. return tempSet;

}

...

}

Figure 1: Servlet

4.1.2 Build SQL-Query Models

For building the SQL-query model for each hotspot that is

identifies, first all of the possible values for the hotspot‘s

query string are computed. To do this, we leverage the Java

String Analysis (JSA) library developed by Christensen,

Møller, and Schwartzbach [3]. The JSA library produces a

non-deterministic finite automaton (NDFA) that expresses all

the possible values the considered string can assume at the

character level. The NDFA for a string is an overestimate of

all the possible values of the string.

To produce the final SQL-query model, an analysis of the

NDFA is performed and then transformed into a model in

which all of the transitions represent semantically meaningful

tokens in the SQL language. The operation creates an NDFA

in which all of the transitions are annotated with SQL

keywords, operators, or literal values. In the model, transitions

are marked corresponding to the externally defined strings

with the symbol β. To illustrate, Figure 2 shows the SQL-

query model for the hotspot. The model shows the two

different query strings that can be generated by the code

depending on the branch followed after the if statement at line

6 (Figure 1). In our model, β marks the position of the user-

supplied inputs in the query string.

4.1.3 Instrument Application

Firstly, we instrument the application code with calls to a

monitor that checks the queries during runtime. Then, we

insert a call to the monitor before the call to the database for

each hotspot. The query string, that is about to be submitted

and a unique identifier, for the hotspot are the two parameters

that are used to invoke the monitor. The monitor uses the

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

Figure 4: High-Level View of AMNESIA

identifier to retrieve the SQL-query model for that hotspot.

Figure 3 shows how the example application would be

instrumented by our technique. The hotspot, originally at line

10 in Figure 1, is now guarded by a call to the monitor at line

10a.

...

10a. if (monitor.accepts (<hotspot ID>,

queryString))

{

10b. ResultSet tempSet =

stmt.execute(queryString);

11. return tempSet;

}

...

Figure 3: Example hotspot after instrumentation.

4.1.4 Runtime Monitoring

The application executes normally until it reaches a

hotspot at the runtime. The query string is now sent to the

monitor. The runtime monitor parses the query string into a

sequence of tokens according to the specific SQL dialect

considered. Figure 4 shows how the last two queries would be

parsed during runtime monitoring.

After the query is parsed, the runtime monitor checks if the

hotspot‘s SQL-query model is violated by the query or not.

The monitor checks whether the sequence of tokens in the

query string is accepted by the model. On matching the query

string against the SQL-query model, a token that corresponds

to a numeric or string constant (including the empty string, ε)

can match either an identical literal value or a β label. If the

model does not accept the sequence of tokens the query is

identifies an SQLIA, by the monitor.

To show the runtime monitoring, consider the queries
shown in Figure 4. The tokens in query ‗a‘ specify a set of
transitions that terminate in an accepting state. Therefore,
query ‗a‘ is executed on the database. Query ‗b‘ contains extra
tokens which prevent it from reaching an accepting state and
is identified as an SQLIA.

4.2 Implementation

In our demonstration, we show an implementation of our

technique, AMNESIA that works for Java-based Web

applications. The technique is fully automated, requiring only

the Web application as input, and requires no extra runtime

environment support beyond deploying the application with the

AMNESIA library. We developed the tool in Java and its

implementation consists of three modules:

Analysis module: This module implements Steps 1 and 2 of

our technique. It inputs a Java Web application an outputs a list

of hotspots and a SQL-query model for each hotspot. For the

implementation of this module, we leverage the Java String

Analysis library [3]. The analysis module is able to analyze

Java Servlets and JSP pages.

Instrumentation module: This module implements Step 3 of

our technique. It inputs a Java Web application and a list of

hotspots and instruments each hotspot with a call to the runtime

monitor. We implemented this module using InsECTJ, a

generic instrumentation and monitoring framework for Java

[4].

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

Runtime-monitoring module: This module implements Step

4 of our technique. The module takes as input a query string

and the ID of the hotspot that generated the query, retrieves the

SQL-query model for that hotspot, and checks the query

against the model.

Figure 5 shows a high-level overview of AMNESIA. In the

static phase, the Instrumentation Module and the Analysis

Module take as input a Web application and produce (1) an

instrumented version of the application and (2) an SQL-query

model for each hotspot in the application. In the dynamic

phase, the Runtime-Monitoring Module checks the dynamic

queries while users interact with the Web application. If a

query is identified as an attack, it is blocked and reported.

To report an attack, AMNESIA throws an exception and

encodes information about the attack in the exception. If

developers want to access the information at runtime, they can

leverage the exception-handling mechanism of the language

and integrate their handling code into the application. Having

this attack information available at runtime allows developers

to react to an attack right after it is detected and develop an

appropriate customized response. Currently, the information

reported by AMNESIA includes the time of the attack, the

location of the hotspot that was exploited, the attempted-attack

query, and the part of the query that was not matched against

the model.
Our tool makes one primary assumption regarding the

Applications it targets—that queries are created by

manipulating strings in the application. In other words,

AMNESIA assumes that the developer creates queries by

combining hard-coded strings and variables using operations

such as concatenation, appending, and insertion. Although this

assumption precludes the use of AMNESIA on some

applications (e.g., applications that externalize all query-related

strings in files), it is not an overly restrictive assumption.

Moreover, it is an implementation-related assumption that can

be eliminated with suitable engineering.

V. CONCLUSION:

Here we have developed prevention mechanism to

protect the vulnerable website and its database from being

exploited by the SQL Injection attacks. We have used the java

string library for manipulating the injection attack and thereby

preventing the injection inside of the database.These

techniques will secure the web application and also strengthen

the customer relationship with web to safely access the

confidential information.

VI. FUTURE SCOPE:

In the future a special dedicated parser can be

developed for scanning the illegal SQL strings, running at

backend of the application. The parser at the backend will be

running and discarding the invalid characters of SQL so that

only trIn our future work we will investigate alternate

techniques for building SQL models for cases in which the

static analysis cannot be used.

VII. REFERENCES

[1] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing

SQL injection attacks. In

Proc. of the 2nd Applied

Cryptography and Network Security Conf. (ACNS 2004),

pages 292–302, Jun. 2004.

[2] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using

Parse Tree Validation to Prevent SQL Injection Attacks. In

Proc. of the 5th Intern. Workshop on Software Engineering

and Middleware (SEM 2005)

, pages 106–113, Sep. 2005.

[3] A. S. Christensen, A. Møller, and M. I. Schwartzbach.

Precise analysis of string expressions. In Proc. 10th Intern.

Static Analysis Symposium (SAS 2003) , pages 1–18, Jun.

2003.

[4] A. Seesing and A. Orso. InsECTJ: A Generic

Instrumentation Framework for Collecting Dynamic

Information within Eclipse. In Proc. of the eclipse

Technology eXchange (eTX) Workshop at OOPSLA 2005,

pages 49–53, Oct. 2005.

[5] SQL Server 2000 Extended Stored Procedure Vulnerability

http://www.atstake.com/research/advisories/2000/a120100-

2.txt

[6]Indrani Balsundaram , An efficient technique for detection

and prevention of SQL injection attack using ASCII based

string matching, International conference on communication

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 4, April 2015.

www.ijiset.com

ISSN 2348 – 7968

technology and system design 2012,madhurai university, May

2012.

[7] William G.J. Halfond, Alessandro Orso, and Panagiotis

Manolios (2008): WASP: Protecting Positive Tainting and

Syntax-Aware Evaluation .IEEE Transactions on Software

Engineering, Vol. 34, No. 1

[8] Zhendong Su and Gary Wassermann (2006): The Essence

of Command Injection Attacks in Web Applications. In ACM

Symposium on Principles of Programming Languages

(POPL)―top ten most critical web application vulnerabilities‖,

OWASP Foundation.

[9] S.V. Shanmughaneethi, S.C. E. Shyni, and S.

Swamynathan (2009): SBSQLID: Securing Web Applications

with Service Based SQL Injection Detection. IEEE

Conference, Computer Society, pp. 702-704.

[10] ―AMNESIA: Analysis and Monitoring for NEutralizing

SQLInjection Attacks‖ William G.J. Halfond and

Alessandro Orso College of Computing Georgia Institute of

Technology whalfondorso@cc.gatech.edu

