
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 7, July 2015.

www.ijiset.com

ISSN 2348 – 7968

Implementation Of Two Bit Sequential Multiplier For Low Area
Boya MahendraP

 1
P, T.ChakrapaniP

 2
P K.Prasad BabuP

 3
P H.DevannaP

 4
P K.SudhakarP

 5

P

1 ,
PMtech VLSISD 13G31D5703, ECE, JNTUA/SJCET,

Yerrakota kurnool, Andhra Pradesh 518360, India, msd416@gmail.com

P

2
P Associate Professor, ECE, JNTUA/SJCET,

Yerrakota kurnool, Andhra Pradesh 518360, India, tchakrapani57@gmail.com

P

3
P Assistant Professor ECE, JNTUA/SJCET,

Yerrakota kurnool, Andhra Pradesh 518360, India, kprasadbabuece433@gmail.com

P

4
P Associate Professor ECE, JNTUA/SJCET,

Yerrakota kurnool, Andhra Pradesh 518360, India, devanna_03@yahoo.co.in

P

5
P Associate Professor & HOD ECE dept, JNTUA/SJCET,

Yerrakota kurnool, Andhra Pradesh 518360, India, sudhakar_403@yahoo.co.in

Abstract

In this project work, design is based on a 2-bit sequential
multiplier, with 8-bit A and B inputs and a 16-bit result.
This multiplier has an 8-bit bi-directional I/O for inputting
its A and B operands, and outputting its 16-bit output one
byte at a time. The multiplexed bi-directorial data-bus is
used to reduce the total number of pins of the multiplier.
Verilog code is used for entire design of project. Modules
such as Register, adder, shifter, multiplexer, tristate bus,
controller, datapath and Multiplier are designed.

Keywords: Sequential Multiplier, Multiplexer, Low
Area, Verilog

1. Introduction
The project is the design of a 2-bit sequential multiplier,
with 8-bit A and B inputs and a 16-bit result. The block
diagram of the circuit to be designed is shown in Figure.
This multiplier has an 8-bit bi-directional I/O for
inputting its A and B operands, and outputting its 16-bit
output one byte at a time.
Multiplication begins with the start pulse, and the databus
will contain operands A and B in two consecutive clock
pulses. After accepting these data inputs, the multiplier
begins its multiplication process and when it is completed,
it starts sending the result out on the databus. When the
least significant byte is placed on databus, the Lsb_out
output is issued, and for the most-significant byte, msb_out
is issued. When both bytes are outputted, done becomes 1,
and the multiplier is ready for another set of data.
The multiplexed bi-directorial databus is used to reduce the
total number of pins of the multiplier.

Figure: Multiplier Block Diagram

2. Shift-and-Add Multiplication
When designing multipliers there is always a compromise
to be made between how fast the multiplication process is
done and how much hardware we are using for its
implementation. A simple multiplication method that is
slow, but efficient in use of hardware is the shift-and-add
method. In this method, depending on bit i of operand A,
either operand B is added to the collected partial result and
then shifted to the right (when bit i is 1), or (when bit i is 0)
the collected partial result is shifted one place to the right
without being added to B. This method is justified by
considering how binary multiplication is done manually.
Figure shows manual multiplication of two 8-bit binary
numbers.

649

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 7, July 2015.

www.ijiset.com

ISSN 2348 – 7968

Figure:

We start considering bits of A from right to left. If a bit
value is 0 we select 00000000 to be added with the next
partial product, and if it is a 1, the value of B is selected.
This process repeats, but each time 00000000 or B is
selected, it is written one place to the left with respect to
the previous value. When all bits of A are considered, we
add all calculated values to come up with the multiplication
results.
Understanding hardware implementation of this procedure
becomes easier if we make certain modifications to this
procedure. First, instead of having to move our observation
point from one bit of A to another, we put A in a shift
register, always observe its right-most bit, and after every
calculation, we move it one place to the right, making its
next bit accessible.
Second, for the partial products, instead of writing one and
the next one to its left, when writing a partial product, we
move it to the right as we are writing it, and the next one
will not have to be shifted. Finally, instead of calculating
all partial products and at the end adding them up, when a
partial product is calculated, we add it to the previous
partial result and write the newly calculated value as the
new partial result. Therefore, if the bit of A that is being
observed is 0, 00000000 is to be added to the previously
calculated partial result, and the new value should be
shifted one place to the right. In this case, since the value
being added to the calculated new sum must be shifted one
place to the right. This is called add-and-shift. Repeating
the above procedure, when all bits of A are shifted out, the
partial result becomes the final multiplication result. We
use a 4-bit example to clarify the above procedure.
partial result is 00000000, adding is not necessary, and only
shifting the partial result is sufficient. This process is called
shift. However, if bit of A being observed is 1, B is to be
added to the previously calculated partial result, and the
calculated new sum must be shifted one place to the right.
This is called add-and-shift. Repeating the above procedure,
when all bits of A are shifted out, the partial result becomes
the final multiplication result. We use a 4-bit example to
clarify the above procedure

At this time, because A[0] is 0, 0000 + P is calculated
(instead of B + P). This value is 00110, the right most
bit of which is shifted into A, and the rest replace P. This
process repeats 4 times, and at the end of the 4th cycle, the
multiplication result becomes available in P and A. The
least significant 4 bits of the result are in A and the
most-significant bits are in P. The example used here
performed 9*13 and 117 was obtained as the result of this
operation.

3. Sequential Multiplier Design
The multiplication process discussed in the previous
section justifies the hardware implementation that is being
discussed here.
3.1 Control Data Partitioning
The multiplier has a datapath and a controller. The data part
consists of registers, logic units and their interconnecting
busses. The controller is a state machine that issues control
signals for control of what gets clocked into the data
registers.
As shown in Figure, the data path registers and the
controller are triggered with the same clock signal. On the
rising edge of a clock the controller goes into a new state.
In this state, several control signals are issued, and as a
result the components of the datapath start reacting to these
signals.
The time given for all activities of the datapath to stabilize
is from one edge of the clock to another. Values that are
propagated to the inputs of the datapath registers are
clocked into these register with every clock edge.

3.2 Multiplier Datapath
Figure shows the datapath of the sequential multiplier. As
shown, P and B are 8-bit registers and A is an 8-bit shift-
register. An adder, a multiplexer and a tri-state buffer
constitute the other components of this datapath.
Control signals that are outputs of the controller and inputs
of the datapath are shown in bold in Figure 11.5 next to the
data component that they control. These control signals
control register clocking, bus assignments and logic unit
output selections. The input databus connects to the inputs
of A and B to load multiplier and multiplicand into these
registers. This bi-directional bus is driven by the
output of P through an octal tri-state buffer, and by the tri-
state output of A. This bi-directional bus is driven by the
output of P through an actual tri-state buffer, and by the tri-
state output of A. These tri-states become active when
multiplication result is ready.

650

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 7, July 2015.

www.ijiset.com

ISSN 2348 – 7968

Figure: Multiplier circuit

The output from B and P are put into an 8-bit adder for
partial result in P to be added to B. The output of this adder
(P+B) feeds one side of a multiplexer. The other side of the
multiplexer is driven by the P output, (P+0). The sel_sum
control input determines if P+B or P+0 is to go on the
multiplexer output.The AND gate shown in selects carry-
out from the adder or 0 depending of the value of sel_sum
control input. This value is concatenated to the left of the
multiplexer output to form a 9-bit vector. This vector has
P+B or P+0 with a carry to its left. The right-most bit of
this 9-bit vector is split and goes into the serial input of the
shift-register that contains A, and the other eight bits go
into register P. Note that concatenation of the AND gate
output to the left of multiplexer output and splitting the
right bit from this 9-bit vector, effectively produces a
shifted result that is clocked into P. When the output enable
(oe) of the shift-register is active, im_data is placed on the
data bi-directional port of the shift-register. Otherwise, data
is float. Placement of im_data on data is also conditioned
by ~s1, so that data is driven only when not used as input.
Another component of the datapath of Figure is the
multiplexer of Figure . This multiplexer selects its a or b
input depending on the value of sel. In addition, the
multiplexer has a zero input that when 1, it forces its output
to 8’h0. Since the multiplexer output connects to P, its
zeroing feature is used for initial resetting of the P register.
As shown in Figure, an octal tri-state buffer connects the
output of P to the bi-directional databus. The Verilog Code
of this buffer is shown in Figure . The en input of this
structure becomes active, when the most significant byte of
the result that is in P is to go on the multiplier output
(databus).

Figure: adder circuit

Figure: shifter circuit

Figure: Register circuit

651

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 7, July 2015.

www.ijiset.com

ISSN 2348 – 7968

Figure: multiplexer circuit

Figure: Tristate Buffer circuit

Figure: datapath circuit

Figure: controller circuit

The multiplier controller is a finite state machine that has
two starting states, eight multiplication states, and two
ending states. States and their binary assignments are
shown in Figure . In the `idle state the multiplier waits
for `start while loading A. In `init, it loads the second
operand B. In `m1 to `m8, the multiplier performs add-and-
shift of P+P, or P+0, depending on A0. In the last two
states (`rslt1 and 1rslt2), the two halves of the result are put
on databus.

Figure: multiplier circuit

This block declares datapath ports, and uses a single always
block to issue control signals and make state transitions. At
the beginning of this always block all control signal
outputs are set to their inactive values. This eliminates
unwanted latches that may be generated by the synthesis
tool for these outputs. The 4-bit current variable represents
the currently active state of the machine. When current is
`idle and start is 0, the done output remains high. In
this state if start becomes 1, control signals load_A, clr_P
and load_P become active to load A with databus and clear
the P register. Clearing P requires clr_P to put 0’s on the
multiplexer output by disabling it and loading the 0’s into P
by asserting load_P. In `m1 to `m8 states, A is shifted, P is

652

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 7, July 2015.

www.ijiset.com

ISSN 2348 – 7968

loaded, and if A0 is 1, sel_sum is asserted. As discussed in
relation to datapath, sel_sum controls shifted P+B or
shifted P+0) to go into P. In the result states lsb_out and
msb_out are asserted in two consecutive clocks in order to
put A and P on the databus, respectively.

4. CONCLUSION &
FUTURESCOPE

Power dissipation in multiplier designs has been much-
researched in recent years, due to the importance of the
multiplier circuit in a wide variety of microelectronic
systems. The focus of multiplier design has traditionally
been delay optimization, although this design goal has
recently been supplemented by power consumption
considerations. Our goal has been first to understand how
power is dissipated in multipliers, and secondly to devise
ways to reduce this power consumption. Power savings of
up to 25% were achieved, along with reductions in die area
and interconnect. We have presented an investigation of
multiplier power dissipation, along with some techniques
which allow reductions in power consumption for this
circuit. Given the importance of multipliers, it is likely that
further research efforts will be directed at optimizing this
block for delay and power efficiency.

REFERENCES
[1] A. Abnous and J. Rabaey, “Ultra-low-power domain-
specific multimedia processors,” in VLSI Signal
Processing, IX, pp.461-470, Oct. 1996.
 [2] I. Abu-Khater, A. Bellaouar, and M. Elmasry, “Circuit
techniques for CMOS low-power high-performance
multipliers”, IEEE J. Solid-State Circuits, vol.31, no.10,
pp.1535-1546, Oct. 1996.
 [3] H. A. Al-Twaijry, Area and Performance Optimized
CMOS Multipliers. Ph.D. dissertation, Stanford University,
Aug. 1997.
 [4] M. Alidina, et. al., “Precomputation-based sequential
logic optimization for low power,” IEEE Trans. VLSI
Systems, vol.2, no.4, pp.426-436, Dec. 1994.
 [5] F.S. Anderson, et. al., “The IBM system 360/91
floating point execution unit,” IBM J. Res. Develop.,
vol.11, pp.34-53, Jan. 1967.
[6] E. de Angel and E.E. Swartzlander, Jr., “Survey of low
power techniques for VLSI design,” in Proc. 8th Annual
IEEE Int. Conf. Innovative Systems in Silicon, pp.159-169,
Oct. 1996.
 [7] E. de Angel and E.E. Swartzlander, Jr., “Low power
parallel multipliers,”in VLSI Signal Processing, IX,
pp.199-208, Oct. 1996.
 [8] E. de Angel, Low Power Digital Multiplication. Ph.D.
dissertation, The University of Texas at Austin, 1996.
[9] E. de Angel and E.E. Swartzlander, Jr., “Switching
activity in parallel multipliers,” in Proc. 35th Asilomar
Conf. Signals, Systems and Computers, pp.857-860, Nov.
2001.
 [10] TSMC 0.18μm Process 1.8-Volt SAGE-X Standard
Cell Library Databook. Artisan Components, Inc., Oct.
2001.

 [11] A. Bellaouar and M. Elmasry, Low-power Digital
VLSI Design: Circuits and Systems. Kluwer Academic
Publishers, 1995.
 [12] G.W. Bewick, Fast Multiplication: Algorithms and
Implementation. Ph.D. dissertation, Stanford University,
Feb. 1994.

653

http://www.ijiset.com/

