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Abstract 
 
In this project work, design is based on a 2-bit sequential 
multiplier, with 8-bit A and B inputs and a 16-bit result. 
This multiplier has an 8-bit bi-directional I/O for inputting 
its A and B operands, and outputting its 16-bit output one 
byte at a time. The multiplexed bi-directorial data-bus is 
used to reduce the total number of   pins of the multiplier. 
Verilog code is used for entire design of project. Modules 
such as Register, adder, shifter, multiplexer, tristate bus, 
controller, datapath and Multiplier are designed. 
 
Keywords: Sequential Multiplier, Multiplexer, Low 
Area, Verilog 
 

1. Introduction 
The project is the design of a 2-bit sequential multiplier, 
with 8-bit A and B inputs and a 16-bit result. The block 
diagram of the circuit to be designed is shown in Figure. 
This multiplier has an 8-bit bi-directional I/O for 
inputting its A and B operands, and outputting its 16-bit 
output one byte at a time. 
Multiplication begins with the start pulse, and the databus 
will contain operands A and B in two consecutive clock 
pulses. After accepting these data inputs, the multiplier 
begins its multiplication process and when it is completed, 
it starts sending the result out on the databus. When the 
least significant byte is placed on databus, the Lsb_out 
output is issued, and for the most-significant byte, msb_out 
is issued. When both bytes are outputted, done becomes 1, 
and the multiplier is ready for another set of data. 
The multiplexed bi-directorial databus is used to reduce the 
total number of pins of the multiplier. 
 
 
 
 

 
 
 

 
 
Figure: Multiplier Block Diagram 

2. Shift-and-Add Multiplication 
When designing multipliers there is always a compromise 
to be made between how fast the multiplication process is 
done and how much hardware we are using for its 
implementation. A simple multiplication method that is 
slow, but efficient in use of hardware is the shift-and-add 
method. In this method, depending on bit i of operand A, 
either operand B is added to the collected partial result and 
then shifted to the right (when bit i is 1), or (when bit i is 0) 
the collected partial result is shifted one place to the right 
without being added to B. This method is justified by 
considering how binary multiplication is done manually. 
Figure shows manual multiplication of two 8-bit binary 
numbers. 
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Figure: 

 
 
 
We start considering bits of A from right to left. If a bit 
value is 0 we select 00000000 to be added with the next 
partial product, and if it is a 1, the value of B is selected. 
This process repeats, but each time 00000000 or B is 
selected, it is written one place to the left with respect to 
the previous value. When all bits of A are considered, we 
add all calculated values to come up with the multiplication 
results. 
Understanding hardware implementation of this procedure 
becomes easier if we make certain modifications to this 
procedure. First, instead of having to move our observation 
point from one bit of A to another, we put A in a shift 
register, always observe its right-most bit, and after every 
calculation, we move it one place to the right, making its 
next bit accessible.  
Second, for the partial products, instead of writing one and 
the next one to its left, when writing a partial product, we 
move it to the right as we are writing it, and the next one 
will not have to be shifted. Finally, instead of calculating 
all partial products and at the end adding them up, when a 
partial product is calculated, we add it to the previous 
partial result and write the newly calculated value as the 
new partial result. Therefore, if the bit of A that is being 
observed is 0, 00000000 is to be added to the previously 
calculated partial result, and the new value should be 
shifted one place to the right. In this case, since the value 
being added to  the calculated new sum must be shifted one 
place to the right. This is called add-and-shift. Repeating 
the above procedure, when all bits of A are shifted out, the 
partial result becomes the final multiplication result. We 
use a 4-bit example to clarify the above procedure. 
partial result is 00000000, adding is not necessary, and only 
shifting the partial result is sufficient. This process is called 
shift. However, if bit of A being observed is 1, B is to be 
added to the previously calculated partial result, and the 
calculated new sum must be shifted one place to the right. 
This is called add-and-shift. Repeating the above procedure, 
when all bits of A are shifted out, the partial result becomes 
the final multiplication result. We use a 4-bit example to 
clarify the above procedure 

 
At this time, because A[0] is 0, 0000 + P is calculated 
(instead of B + P). This value is 00110, the right most 
bit of which is shifted into A, and the rest replace P. This 
process repeats 4 times, and at the end of the 4th cycle, the 
multiplication result becomes available in P and A. The 
least significant 4 bits of the result are in A and the 
most-significant bits are in P. The example used here 
performed 9*13 and 117 was obtained as the result of this 
operation. 

 
 
 

3. Sequential Multiplier Design 
The multiplication process discussed in the previous 
section justifies the hardware implementation that is being 
discussed here. 
3.1 Control Data Partitioning 
The multiplier has a datapath and a controller. The data part 
consists of registers, logic units and their interconnecting 
busses. The controller is a state machine that issues control 
signals for control of what gets clocked into the data 
registers. 
As shown in Figure, the data path registers and the 
controller are triggered with the same clock signal. On the 
rising edge of a clock the controller goes into a new state. 
In this state, several control signals are issued, and as a 
result the components of the datapath start reacting to these 
signals. 
The time given for all activities of the datapath to stabilize 
is from one edge of the clock to another. Values that are 
propagated to the inputs of the datapath registers are 
clocked into these register with every clock edge.  
 
3.2 Multiplier Datapath 
Figure  shows the datapath of the sequential multiplier. As 
shown, P and B are 8-bit registers and A is an 8-bit shift-
register. An adder, a multiplexer and a tri-state buffer 
constitute the other components of this datapath. 
Control signals that are outputs of the controller and inputs 
of the datapath  are shown in bold in Figure 11.5 next to the 
data component that they control. These control signals 
control register clocking, bus assignments and logic unit 
output selections. The input databus connects to the inputs 
of A and B to load multiplier and multiplicand into these 
registers. This bi-directional bus is driven by the 
output of P through an octal tri-state buffer, and by the tri-
state output of A. This bi-directional bus is driven by the 
output of P through an actual tri-state buffer, and by the tri-
state output of A. These tri-states become active when 
multiplication result is ready. 
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Figure: Multiplier circuit  

The output from B and P are put into an 8-bit adder for 
partial result in P to be added to B. The output of this adder 
(P+B) feeds one side of a multiplexer. The other side of the 
multiplexer is driven by the P output, (P+0). The sel_sum 
control input determines if P+B or P+0 is to go on the 
multiplexer output.The AND gate shown in selects carry-
out from the adder or 0 depending of the value of sel_sum 
control input. This value is concatenated to the left of the 
multiplexer output to form a 9-bit vector. This vector has 
P+B or P+0 with a carry to its left. The right-most bit of 
this 9-bit vector is split and goes into the serial input of the 
shift-register that contains A, and the other eight bits go 
into register P. Note that concatenation of the AND gate 
output to the left of multiplexer output and splitting the 
right bit from this 9-bit vector, effectively produces a 
shifted result that is clocked into P. When the output enable 
(oe) of the shift-register is active, im_data is placed on the 
data bi-directional port of the shift-register. Otherwise, data 
is float. Placement of im_data on data is also conditioned 
by ~s1, so that data is driven only when not used as input. 
Another component of the datapath of Figure is the 
multiplexer of Figure . This multiplexer selects its a or b 
input depending on the value of sel. In addition, the 
multiplexer has a zero input that when 1, it forces its output 
to 8’h0. Since the multiplexer output connects to P, its 
zeroing feature is used for initial resetting of the P register. 
As shown in Figure, an octal tri-state buffer connects the 
output of P to the bi-directional databus. The Verilog Code 
of this buffer is shown in Figure . The en input of this 
structure becomes active, when the most significant byte of 
the result that is in P is to go on the multiplier output 
(databus). 

 

Figure: adder circuit 

 

Figure: shifter circuit 

 

 

Figure: Register circuit 
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Figure: multiplexer circuit 

 

 

Figure: Tristate Buffer circuit 

 

 

Figure: datapath circuit 

 

 
Figure: controller circuit 

The multiplier controller is a finite state machine that has 
two starting states, eight multiplication states, and two 
ending states. States and their binary assignments are 
shown in Figure . In the `idle state the multiplier waits 
for `start while loading A. In `init, it loads the second 
operand B. In `m1 to `m8, the multiplier performs add-and-
shift of P+P, or P+0, depending on A0. In the last two 
states (`rslt1 and 1rslt2), the two halves of the result are put 
on databus. 
 

 

Figure: multiplier circuit 

This block declares datapath ports, and uses a single always 
block to issue control signals and make state transitions. At 
the beginning of this always block all control signal 
outputs are set to their inactive values. This eliminates 
unwanted latches that may be generated by the synthesis 
tool for these outputs. The 4-bit current variable represents 
the currently active state of the machine. When current is 
`idle and start is 0, the done output remains high. In 
this state if start becomes 1, control signals load_A, clr_P 
and load_P become active to load A with databus and clear 
the P register. Clearing P requires clr_P to put 0’s on the 
multiplexer output by disabling it and loading the 0’s into P 
by asserting load_P. In `m1 to `m8 states, A is shifted, P is 
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loaded, and if A0 is 1, sel_sum is asserted. As discussed in 
relation to datapath, sel_sum controls shifted P+B or 
shifted P+0) to go into P.  In the result states lsb_out and 
msb_out are asserted in two consecutive clocks in order to 
put A and P on the databus, respectively. 
 

4. CONCLUSION & 
FUTURESCOPE  

Power dissipation in multiplier designs has been much-
researched in recent years, due to the importance of the 
multiplier circuit in a wide variety of microelectronic 
systems. The focus of multiplier design has traditionally 
been delay optimization, although this design goal has 
recently been supplemented by power consumption 
considerations. Our goal has been first to understand how 
power is dissipated in multipliers, and secondly to devise 
ways to reduce this power consumption. Power savings of 
up to 25% were achieved, along with reductions in die area 
and interconnect. We have presented an investigation of 
multiplier power dissipation, along with some techniques 
which allow reductions in power consumption for this 
circuit. Given the importance of multipliers, it is likely that 
further research efforts will be directed at optimizing this 
block for delay and power efficiency. 
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