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Abstract

The uncertainty is the new approach on the entities to obtain appropriate proper-

ties, when lack of information and knowledge about the entities. The uncertainty

plays a major role in game theory and other human interactions to apply on real

life problem. The developments have leads to the emergence of a new area called

uncertain matrix game whose payoff elements are approximately known that repre-

sent as uncertain variables. Define the properties of uncertain matrix game, called

as uncertain expected value operator and uncertain minimax equilibrium strategy

on the uncertain matrix game. Introduce the entropy function on the strategy

of the matrix game to formulate the new model. The theorem have been shown

that there always exists at least an optimum solution of uncertain matrix game.

Using uncertainty theory the uncertain matrix game converts into crisp linear pro-

gramming problem depends upon the confidence level and solve it using genetic

algorithm. The solution procedure have been discuss on both the uncertain vari-

ables, firstly consider the payoff elements are linear uncertain variables and then,

zigzag uncertain variables. A numerical example have been illustrate to proposed

the methodology.
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1 Introduction

Game theory [14],[15] is the theory of independent and interdependent decision making.

It is concerned with decision making in organizations where the outcome depends on

the decisions of two or more autonomous players, one of which may be natural itself,

and where no signal decision maker has full control over the outcome. Some times the

classical models fail to deal with interdependent decision making because the problems

have been difficult to defined in the crisp scenario. So the developments has lead to the

new area like fuzzy matrix [12] and bimatrix game, credibilistic matrix [13] and bimatrix

[8] games, rough bimatrix [10] game, bifuzzy matrix [9] and bimatrix [11] game and so

on. But main solution concepts is same as like crisp scenario. In all the uncertain types

of game firstly, convert into crisp scenario, which depends upon the confidence level and

solve it using traditional method. There have been various solutions which depends upon

the confidence level and applier can find the optimal solution for appropriate confidence

level.

The uncertainty is the mathematical tool to model imprecise quantities of the entities.

Uncertainty theory was founded by B. Liu [3] in 2007. The first fundamental concept in

uncertainty theory is uncertain measure that is used to measure the belief degree of an

uncertain event. The concepts of membership function and uncertainty distribution are

two basic tools to describe uncertain sets, where membership function is intuitionistic

for us but frangible for arithmetic operations, and uncertainty distribution is hard-to-

understand for us but easy-to-use for arithmetic operations. Fortunately, an uncertainty

distribution may be uniquely determined by a membership function. The concept of

uncertain variable (neither random variable nor fuzzy variable) in order to describe im-

precise quantities in human systems. There are two type of uncertain variables, linear

uncertain variable and zigzag uncertain variable defined by B. Liu [4].

It is natural to ask that, there can define matrix game where the payoff elements can not

be crisp and its follow the properties of uncertainty theory. Entropy optimization models

have been successfully applied to practical problems in many scientific and engineering

disciplines. In this paper, we consider the matrix game whose payoff elements are only

approximately known and can be represented by uncertain variable (linear uncertain and

zigzag uncertain )and defined as uncertain matrix game. In the crisp scenario, there
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exists a beautiful relationship between two person zero sum matrix game and duality

in linear programming [15]. It is therefore natural to ask if something similar holds in

the uncertain scenario as well. This discussion essentially constitutes the core of our

presentation. Firstly, describing the properties of uncertain theory. Then considering

the game whose payoff elements are characterized as uncertain variables and its proper-

ties like uncertain equilibrium strategy, uncertain expected value operator and uncertain

constraints, entropy function and its existence of solution. Finally, the uncertain matrix

game converts into crisp mathematical model depends upon the confidence levels with

dual each other. An example has been illustrated to validate our proposed methodology

and presented conclusion of our paper.

2 Preliminaries

Let Γ be a nonempty set. A collection L of subsets of Γ is called a σ− algebra if

(a) Γ ∈ L (b) if Λ ∈ L then Λc ∈ L and (c) if Λ1,Λ1, · · · ∈ L then Λ1 ∪ Λ1 ∪ · · · ∈ L
Each element Λ in the σ−algebra L is called an event. Uncertain measure is a function

from L to [0, 1]. In order to present an axiomatic definition of uncertain measure, it is

necessary to assign to each event Λ a number M{Λ} which indicates the belief degree

that Λ will occur. In order to ensure that the number M{Λ} has certain mathematical

properties, B. Liu [3] proposed the following four axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.

Axiom 2. (Monotonicity Axiom) M{Λ1} ≤ M{Λ2} whenever Λ1 ⊂ Λ2.

Axiom 3. (Self-Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ.

Axiom 4. (Countable Subadditivity Axiom) For every countable sequence of events {Λi}
, we have,

M

{
∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi}

Definition 2.1 (B. Liu [3]) The set function M is called an uncertain measure if it

satisfies the normality, monotonicity, self-duality, and countable subadditivity axioms.

0 ≤M{Λ} ≤ 1 for any event Λ

M{∅} = 0 where ∅ is a empty set.

Definition 2.2 (B. Liu [3]) Let Γ be a nonempty set,£ a σ− algebra over Γ, and M an

uncertain measure. Then the triplet (Γ,£,M) is called an uncertainty space.
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Definition 2.3 (B. Liu [3]) An uncertain variable is a measurable function ξ from an

uncertainty space (Γ,L,M) to the set of real numbers, i.e, for any Borel set B of real

numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

Definition 2.4 (B. Liu [3]) The uncertainty distribution Φ : < → [0, 1] of an uncertain

variable ξ is defined by

Φ(x) =M{ξ ≤ x}

for any real number x.

Definition 2.5 (B. Liu [4]) An uncertain variable ξ is called linear if it has a linear

uncertainty distribution

Φ(x) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b

1 if x ≥ b

denoted by L(a, b) where a and b are real numbers with a < b. Then for any α ∈ (0, 1]

Φ−1(α) = (1− α)a+ αb

Definition 2.6 (B. Liu [4]) An uncertain variable ξ is called zigzag if it has a zigzag

uncertainty distribution

Φ(x) =


0 if x ≤ a
x−a

2(b−a) if a ≤ x ≤ b
x+c−2b
2(c−b) if b ≤ x ≤ c

1 if x ≥ c

denoted by Z(a, b, c) where a, b and c are real numbers with a < b < c. Then for any

α ∈ (0, 1]

Φ−1(α) =

{
(1− 2α)a+ 2αb if α < 0.5

(2− 2α)b+ (2α− 1)c if α ≥ 0.5

Theorem 2.1 (B. Liu [4]) Assume that ξ1 and ξ2 are independent linear uncertain vari-

ables L(a1, b1) and L(a2, b2), respectively. Then the sum ξ1 + ξ2 is also a linear uncertain

variable L(a1 + a2, b1 + b2), i.e,

L(a1, b1) + L(a2, b2) = L(a1 + a2, b1 + b2)
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The product of a linear uncertain variable L(a, b) and a scalar number k > 0 is also a

linear uncertain variable L(ka, kb), i.e,

kL(a, b) = L(ka, kb)

Theorem 2.2 (B. Liu [4]) Assume that ξ1 and ξ2 are independent zigzag uncertain vari-

ables Z(a1, b1, c1) and Z(a2, b2, c2), respectively. Then the sum ξ1 + ξ2 is also a zigzag

uncertain variable Z(a1 + a2, b1 + b2, c1, c2), i.e,

Z(a1, b1, c1) + L(a2, b2, c2) = L(a1 + a2, b1 + b2, c1 + c2)

The product of a linear uncertain variable Z(a, b, c) and a scalar number k > 0 is also a

linear uncertain variable L(ka, kb, kc), i.e,

kZ(a, b, c) = Z(ka, kb, kc)

Definition 2.7 (B. Liu [4]) Let ξ be an uncertain variable. Then the expected value of

ξ is defined by

E[ξ] =

∫
0

∞
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

E[ξ] =

∫
0

∞
(1− Φ(x))dx−

∫ 0

−∞
Φ(x)dx

where Φ is the uncertainty distribution function of ξ , provided that at least one of the

two integrals is finite.

If ξ ∈ L(a, b) be a linear uncertain variable, then the expected value is E[ξ] = a+b
2

.

If ξ ∈ Z(a, b, c) be a zigzag uncertain variable, then the expected value of ξ is E[ξ] = a+2b+c
4

Let ξ and η be independent uncertain variables with finite expected values. Then for any

real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η]

Definition 2.8 (B. Liu [4]) Let ξ be an uncertain variable with uncertainty distribution

Φ, and α ∈ (0, 1]. Then

ξsup(α) = sup{r|M{ξ ≥ r} ≥ α}
ξsup(α) = Φ−1(1− α)

is called the α-optimistic value to ξ, and

ξinf(α) = inf{r|M{ξ ≤ r} ≥ α}
ξinf(α) = Φ−1(α)
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is called the α-pessimistic value to ξ.

Let ξ be a linear uncertain variable L(a, b). Then its α− optimistic and α−pessimistic

values are

ξsup(α) = αa+ (1− α)b

ξinf(α) = (1− α)a+ αb

Let ξ be a zigzag uncertain variable Z(a, b, c). Then its α−optimistic and α−pessimistic

values are

ξsup(α) =

{
2αb+ (1− 2α)c if α < 0.5

(2α− 1)a+ (2− 2α)b if α ≥ 0.5

ξinf(α) =

{
(1− 2α)a+ 2αb if α < 0.5

(2− 2α)b+ (2α− 1)c if α ≥ 0.5

Definition 2.9 (B. Liu [4]) Suppose that ξ is an uncertain variable with uncertainty

distribution Φ. Then its entropy is defined by

H[ξ] =

∫ ∞
−∞

S(Φ(x))dx

where S(t) = −t ln(t)− (1− t) ln(1− t)
Let ξ be a linear uncertain variable L(a, b). Then its entropy is

H[ξ] = −
∫ b

a

(
x− a
b− a

ln
x− a
b− a

+
b− x
b− a

ln
b− x
b− a

)
dx =

b− a
2

Let ξ be a zigzag uncertain variable Z(a, b, c). Then its entropy is

H[ξ] =
c− a

2

Theorem 2.3 (B. Liu [4]) Assume that x1, x2, · · · , xn are nonnegative decision vari-

ables, and ξ1, ξ2, · · · , ξn are independently linear uncertain variables L(a1, b1),L(a2, b2), · · · ,L(an, bn)

respectively. Then for any confidence level α ∈ (0, 1), the uncertain constraint

M

{
n∑
i=1

ξixi ≤ 0

}
≥ α

holds if and only if

n∑
i=1

((1− α)ai + αbi)xi ≤ 0
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Assume that x1, x2, · · · , xn are nonnegative decision variables, and ξ1, ξ2, · · · , ξn are in-

dependently zigzag uncertain variables Z(a1, b1, c1),Z(a2, b2, c2), · · · ,Z(an, bn, cn) respec-

tively. Then for any confidence level α ∈ (0, 1), the uncertain constraint

M

{
n∑
i=1

ξixi ≤ 0

}
≥ α

holds if and only if,

when α < 0.5

n∑
i=1

((1− 2α)ai + 2αbi)xi ≤ 0

when α ≥ 0.5

n∑
i=1

((2− 2α)bi + (2α− 1)ci)xi ≤ 0

3 Uncertain Matrix Game

In two-person zero-sum game, both players have same pay-off matrix. Suppose the

elements of the pay-off matrix are not defined properly due to incomplete and imprecise

information or lack of knowledge about the real-life data on matrix game. In traditional

point of view, considering the pay-off elements are fuzzy or random variables and solve

the matrix game. But, sometimes the practical point of view, fuzziness or randomness are

not satisfied for the pay-off elements in matrix game. In this situation, the elements may

be considered as uncertain variable and defined as uncertain matrix game for two-person

zero-sum matrix game.

Let X ≡ {1, 2, · · · ,m} and Y ≡ {1, 2, · · · , n} be the set of strategies for players I and II

respectively. Let Rn be the n-dimensional Euclidean space and Rn
+ be its non-negative

orthant. Let eT = {1, 1, · · · , 1} be the vector of elements ‘1’ whose dimension is specified

as per specific context. Mixed strategies of players I and II are represented by weights

to their strategies SX = {x ∈ Rm
+ , e

Tx = 1} and SY = {y ∈ Rn
+, e

Ty = 1} respectively.

We consider the uncertain variable ξij associated with pay-off element which implies that

the player I gains or player II loses when player I played the strategy i and player II

played the strategy j. Then the two-person zero-sum matrix game is represented by

7
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uncertain pay-off matrix as follows :

ξ =



ξ11 ξ12 . . . ξ1n

ξ21 ξ22 . . . ξ2n

. . . . . .

. . . . . .

. . . . . .

ξm1 ξm2 . . . ξmn


The meaning of the solution of the uncertain matrix game Gξ = {SX , SY , ξ} is best

understood in terms of maxmin and minmax principle for players I and II respectively.

Then the maxminimizer of player I is the solution of the uncertain expected value v∗ i.e,

v∗ = max
x∈SX

min
y∈SY

E[xT ξy]

and the minmaximizer of player II is the solution of the uncertain expected value w∗

where,

w∗ = min
y∈SY

max
x∈SX

E[xT ξy]

Definition 3.1 Let ξ = (ξij)m×n (i = 1, 2, ...,m, j = 1, 2, ..., n) be uncertain variables

with finite expected values. Then (x∗, y∗) ∈ SX × SY is called a uncertain expected

minimax equilibrium strategy to the uncertain matrix game Gξ = {SX , SY , ξ} if,

E[xT ξy∗] ≤ E[x∗T ξy∗] ≤ E[x∗T ξy]

Assuming that player I’s optimal decision criteria is to maximize the critical value of

his uncertain payoff xT ξy at given confidence level α ∈ (0, 1]. Then a maxminimizer of

player I is the solution of the uncertain constrained programming as follows:

max
x∈SX

min
y∈SY

max
v
M{xT%y ≥ v} ≥ α

Definition 3.2 Let ξij(i = 1, 2, · · · ,m; j = 1, 2, · · · , n) be independent uncertain vari-

ables, α ∈ (0, 1] and v ∈ R be the predetermined level of the uncertain pay-offs. Then

(x∗, y∗) is called a α-uncertain equilibrium to the uncertain matrix game G% = {SX , SY , %}
if,

max{v| M{xT ξy∗ ≥ v} ≥ α} ≤ max{v| M{x∗T ξy∗ ≥ v} ≥ α} ≤
max{v| M{x∗T ξy ≥ v} ≥ α}

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 2, February 2016.
www.ijiset.com

ISSN 2348 – 7968

600



Theorem 3.1 In a two-person zero-sum game, the uncertain payoffs ξ = (ξij)m×n (i =

1, 2, ...,m, j = 1, 2, ..., n) be characterized as uncertain variables with finite expected val-

ues. Then there exists at least a uncertain expected minimax equilibrium strategy to the

uncertain matrix game Gξ = {SX , SY , ξ}.

Proof : For any y ∈ SY , let

Q(y) = {x ∈ SX : E[xT ξy] ≤ E[xT ξy], ∀x ∈ SX}

then Q(y) ⊂ SX For any x ∈ SX , let

P (x) = {y ∈ SY : E[xT ξy] ≤ E[xT ξy], ∀y ∈ SY }

then P (x) ⊂ SY . We first prove that Q(y) and P (x) are both convex sets. For any

x1, x2 ∈ Q(y), it is clear that λx1 + (1−λ)x2 ∈ SX with λ ∈ [0, 1]. Since the components

of x1, x2 are all nonnegative real numbers, it follows that,

E[(λx1 + (1− λ)x2)
T ξy] = λE[x1

T ξy] + (1− λ)E[x2
T ξy]

Moreover, it follows from above that E[x1
T ξy] ≥ E[xT ξy] and E[x2

T ξy] ≥ E[xT ξy] for

any x ∈ SX . Thus for any λ ∈ [0, 1], λE[x1
T ξy] ≥ λE[xT ξy] and (1 − λ)E[x2

T ξy] ≥
(1− λ)E[xT ξy]. Hence, we have,

E[(λx1 + (1− λ)x2)
T ξy] ≥ E[xT ξy], ∀x ∈ SX

This implies that

λx1 + (1− λ)x2 ∈ Q(y)

Hence Q(y) is a convex set. Similarly, we can prove that P (x) is a convex set. Let

F : SX × SY → P (SX × SY ) be a set-valued mapping defined by

F (z) = Q(y)× P (x), ∀z = (xT , yT ) ∈ SX × SY ,

where P (SX × SY ) is the power set of SX × SY . Then we have,

(u, v) ∈ F (z)⇔ u ∈ Q(y), v ∈ P (x)

Let zn = (xn
T , yn

T )
T

and (un, vn) ∈ F (zn), where un → u0, vn → v0, xn → x0 and

yn → y0 as n→∞. Since un ∈ Q(yn), for any x ∈ SX , we obtain

E[xT ξyn] ≤ E[un
T ξyn]
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Hence,

lim
n→+∞

E[xT ξyn] ≤ lim
n→+∞

E[un
T ξyn]

It implies that

E[xT ξy0] ≤ E[u0
T ξy0]

Thus u0 ∈ Q(y0). Similarly, since vn ∈ P (xn), for any y ∈ SY , we have,

E[xn
T ξvn] ≤ E[xn

T ξy]

Hence,

lim
n→+∞

E[xn
T ξvn] ≤ lim

n→+∞
E[xn

T ξy]

It implies that

E[x0
T ξv0] ≤ E[x0

T ξy]

Thus v0 ∈ P (x0). Hence Q(y) and P (x) are both convex closed sets and the graph of F

is convex closed. It is clear that the set-valued maping F is upper semi-continuous with

non-empty, convex closed values. It follows from Kakutani’s fixed-point theorem that

there exists at least a point z∗ ∈ SX × SY such that z∗ ∈ F (z∗), i.e, there exists at least

a point (x∗, y∗) ∈ (SX , SY ), such that

x∗ ∈ Q(y∗)⇒ E[xT ξy∗] ≤ E[x∗T ξy∗], ∀x ∈ SX

y∗ ∈ P (x∗)⇒ E[x∗T ξy∗] ≤ E[x∗T ξy], ∀y ∈ SY

The theorem is proved.

If for each uncertain variables ξij, i = 1, 2, · · · ,m, j = 1, 2, · · · , n are independent, then

for any mixed strategies x and y, it follows from the properties that

E[xT ξy] = E[
n∑
j=1

m∑
i=1

ξijxiyj] =
n∑
j=1

m∑
i=1

E[ξij]xiyj

It is well known that every two-person zero-sum matrix game with crisp payoffs has

a minimax equilibrium strategy, then the matrix game with uncertain payoffs has a

uncertain minimax equilibrium strategy.

4 Linear Programming Problem (LPP)

The LPP is one of the most widely used techniques in operations research, it is defined

as means of maximizing a quantity known as objective function, subject to a set of
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constraints represented by equations and inequalities. It is very well known that every

two-person zero-sum matrix game is equivalent to two linear programming problems

which are dual to each other. If any one of these two mutually dual linear programming

problems is solved, then the solution of the other can be made by using linear duality

theory [14].

Let us consider the uncertain matrix game Gξ = {SX , SY , ξ} then for the player II

problem is

min
y∈SY

max
x∈SX

xT ξy

where Min and Max operators are defined as

min
y∈SY

xT ξy = xT ξymin such that E[xT ξy] ≥ E[xT ξymin]

and

max
y∈SY

xT ξy = xT ξymax such that E[xT ξy] ≤ E[xT ξymax]

Since SX and SY are compact convex sets and for a given y, xT ξy is a linear function of

x, then,

max
x∈SX

xT ξy

will be attained at an extreme point of SX . Therefore, for given y ∈ SY ,

max
x∈SX

xT ξy = max
1≤i≤m

n∑
j=1

ξij yj

If we consider,

w = max
1≤i≤m

n∑
j=1

ξijyj

Then the minmax value of the player II is obtained by solving the following linear pro-

gramming problem with uncertain constraints as :

Model 1

min w

subject to,
n∑
j=1

ξij yj ≤ w for i = 1, 2, · · · ,m

eTy = 1

y ≥ 0

11
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Applying the transformation y
′
j =

yj
w

, then eTy
′

= 1
w

and the above Model 1 becomes

into a standard linear programming problem with uncertain constraints as follows:

Model 2

max eTy
′

subject to,
n∑
j=1

ξij y
′

j ≤ 1 for i = 1, 2, · · · ,m (4.1)

y
′ ≥ 0

Applying the transformation y
′
j =

yj
w

, then eTy
′

= 1
w

and the above Model 1 becomes

into a standard linear programming problem with uncertain constraints as follows:

The entropy uncertain game model(Das and Roy) for both the players are given in the

following models Model 1e. Then the LPP program becomes

Model 2e

max eTy
′

max entr1 (4.2)

subject to,
n∑
j=1

ξij y
′

j ≤ 1 for i = 1, 2, · · · ,m (4.3)

entr1 = −
n∑
j=1

y
′

j ln(y
′

j) (4.4)

y
′ ≥ 0

Again, the constraints (4.1) are not deterministic feasible region due to present of un-

certain variables. A natural idea is to provide the confidence levels α ∈ (0, 1], of the

uncertain measure M at which it desires that the uncertain constraints hold. Thus we

have,

M{
n∑
j=1

ξij y
′

j − 1 ≤ 0} ≥ α for i = 1, 2, · · · ,m

Using above real constraints into the Theorem 2.3, we can find the crisp constraints for

i = 1, 2, · · · ,m from the uncertain constraints (4.1). Let us assume that the uncertain

payoff matrix ξij = L(aij, bij) be the linear uncertain variables Then, the Model 2 with

real constraints can be defined, depending upon the confidence level as follows:
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Model 3

max eTy
′

max entr1

subject to,
n∑
j=1

((1− α)aij + αbij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

entr1 = −
n∑
j=1

y
′

j ln(y
′

j)

y
′ ≥ 0

Let us assume that the uncertain payoff matrix ξij = Z(aij, bij, cij) be the zigzag uncertain

variables Then, the Model 2 with real constraints can be defined, depending upon the

confidence level as follows:

Model 4

max eTy
′

max entr1

subject to,

if α < 0.5,
n∑
j=1

((1− 2α)aij + 2αbij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

if α ≥ 0.5,
n∑
j=1

((2− 2α)bij + (2α− 1)cij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

entr1 = −
n∑
j=1

y
′

j ln(y
′

j)

y
′ ≥ 0

For the equally weight of the objective function of entropy and strategy the model be-

comes
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Model 3e

max eTy
′

+ entr1

subject to,
n∑
j=1

((1− α)aij + αbij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

entr1 = −
n∑
j=1

y
′

j ln(y
′

j)

y
′ ≥ 0

Model 4e

max eTy
′

+ entr1

subject to,

if α < 0.5,
n∑
j=1

((1− 2α)aij + 2αbij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

if α ≥ 0.5,
n∑
j=1

((2− 2α)bij + (2α− 1)cij) y
′

j ≤ 1 for i = 1, 2, · · · ,m

entr1 = −
n∑
j=1

y
′

j ln(y
′

j)

y
′ ≥ 0

5 Genetic Algorithm(GA)

In this section, we introduce the genetic algorithm [5] to find the uncertain expected

minimax equlibrium strategies and uncertain expected value of the game (optimal strat-

egy and value of the game for the both players) of the uncertain matrix game. The

chromosomes of the genetic algorithm are the strategies of the uncertain matrix game.

The following steps are followed to find the optimal strategy and value of the game for

the both players of the uncertain matrix game.

Initialization: Randomly selects the Population Size as 50 chromosome between (0, 1)

which satisfy the constraints of the uncertain matrix game.

Evaluation: Compute the objective function for all the chromosomes.

Selection: Select the particular chromosome which gives the optimum solution of the

objection function of the uncertain matrix game.
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Crossover: Generate the new chromosome using crossover of the pair of chromosomes

and the new chromosome must satisfy the constraints of the uncertain matrix game.

Mutation: Mutation is a genetic operator used to maintain genetic diversity from one

generation of a population of genetic algorithm chromosomes to the next. Mutation al-

ters one or more gene values in a chromosome from its initial state. In mutation, the

solution may change entirely from the previous solution. Hence GA can come to better

solution by using mutation.

Step 1: Initialization

Step 2: Evaluation for iteration 1

Step 3: Selection

Step 4: Crossover

Step 5: Mutation

Step 6: Evaluation for the current iteration

Step 7: At the end of iteration (500), we obtain the optimal solution otherwise goto

Step 3.

6 Numerical Example

In order to show the applicability of the proposed methodology, let us assume that the

linear uncertain payoff matrix is.

ξ =

[
L(180, 190) L(156, 158)

L(90, 95) L(180, 190)

]

then the player II LPP problem Model 3e is

max y
′

1 + y
′

2 + entr1

subject to,

{180(1− α) + 190α} y′

1 + {156(1− α) + 158α} y′

2 ≤ 1

{90(1− α) + 95α} y′

1 + {180(1− α) + 190α} y′

2 ≤ 1

entr1 = −y′

1 ln(y
′

1)− y
′

2 ln(y
′

2)

y
′

1, y
′

2 ≥ 0
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For α = 0.5, the above LPP can be written as

max y
′

1 + y
′

2 + entr1

subject to,

185 y
′

1 + 157 y
′

2 ≤ 1

92.5 y
′

1 + 185 y
′

2 ≤ 1

entr1 = −y′

1 ln(y
′

1)− y
′

2 ln(y
′

2)

y
′

1, y
′

2 ≥ 0

The solution of the above problem using GA is y
′

= (0.001421139, 0.004694836) with

strategy for the player II is (0.232365, 0.767635) and value of the game is w8 = 163.506228.

If we consider the uncertainty payoff elements are zigzag uncertain variables

ξ =

[
Z(180, 190, 200) Z(156, 158, 160)

Z(90, 95, 100) Z(180, 190, 200)

]
For α = 0.2, the the player II LPP problem Model 4e can be written as

max y
′

1 + y
′

2 + entr1

subject to,

184 y
′

1 + 156 y
′

2 ≤ 1

92 y
′

1 + 184 y
′

2 ≤ 1

entr1 = −y′

1 ln(y
′

1)− y
′

2 ln(y
′

2)

y
′

1, y
′

2 ≥ 0

The solution of the above problem using GA is y∗ = (0.001435603, 0.004716981) with

strategy for the player II is (0.233333, 0.766667) and value of the game is w∗ = 162.533336.

For α = 0.7, the above LPP problem Model 4e can be written as

max y
′

1 + y
′

2 + entr1

subject to,

194 y
′

1 + 158 y
′

2 ≤ 1

97 y
′

1 + 194 y
′

2 ≤ 1

entr1 = −y′

1 ln(y
′

1)− y
′

2 ln(y
′

2)

y
′

1, y
′

2 ≥ 0

The solution of the above problem using GA is y∗ = (0.001613626, 0.004347826) with

strategy for the player II is (0.270677, 0.729323) and value of the game is w∗ = 167.744368.
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7 Conclusion

Game theory provides a basic computational framework for formulating and analyzing

the problem that the decision of one person depends on the decision of his opponents. Of

the different types of game, the two person zero sum game, which is also called matrix

game, with uncertainty payoff have been widely discussed. Some solution method on

uncertain matrix game have been devised. In real world, there are cases in which the

payoffs are not exactly known. This papers uses uncertainty variable to represent the

uncertain data and developed a solution method of matrix game. Finally, the optimal

strategy and the value of the game for the players of the proposed model developed with

uncertain constraints (linear uncertain and zigzag uncertain) through applying GA by

the uncertain measure with confidence level(chosen by decision maker). A numerical

example demonstrates the feasibility of applying the uncertain programming approach

to rough matrix game
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