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Abstract In this note, we establish a Lyapunov-type inequality for the following

second-order system of dynamic equations

(A(t)x△(t))△ +B(t)xσ(t) = 0

on the time scale interval [a, b]T ≡ [a, b] ∩T for some a, b ∈ T, where A(t), B(t) are

real n×n symmetric matrix-valued functions on [a, b]T and x is a real vector-valued

function on [a, b]T.
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1 Introduction

In 1990, Hilger introduced in [7] the theory of time scales with one goal being the unified

treatment of differential equations (the continuous case) and difference equations (the discrete

case). A time scale T is an arbitrary nonempty closed subset of the real numbers R, which has

the topology that it inherits from the standard topology on R. The two most popular examples

are R and the integers Z. For the time scale calculus and some related basic concepts, we refer

the readers to the books by Bohner and Peterson [2,3] for further details.

In this note, we study Lyapunov-type inequality for the following second-order system of

dynamic equations

(A(t)x△(t))△ +B(t)xσ(t) = 0 (1.1)
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on the time scale interval [a, b]T ≡ [a, b] ∩T for some a, b ∈ T, where A(t), B(t) are real n × n

symmetric matrix-valued functions on [a, b]T and x is a real vector-valued function on [a, b]T.

When n = 1, A(t) = 1 and T = R, (1.1) reduces to

x′′(t) +B(t)x(t) = 0. (1.2)

In 1907, Lyapunov [10] showed that if B ∈ C([a, b],R) and x(t) ̸≡ 0 (t ∈ [a, b]) is a solution of

(1.2) with x(a) = x(b) = 0, then the following classical Lyapunov inequality holds:∫ b

a
|B(t)|dt > 4

b− a
.

Moreover, the above inequality is optimal.

When n = 1, A(t) = 1 and T = Z, (1.1) reduces to

∆2x(m) +B(m)x(m+ 1) = 0. (1.3)

In 1983, Cheng [5] investigated (1.3) under the assumptions x(a) = x(b) = 0 and x(m) ̸≡

0 for m ∈ {a, a+ 1, · · · , b} and obtained the following Lyapunov inequality

b−2∑
n=a

B(m) ≥
{

4(b−a)
(b−a)2−1

, if b− a− 1 is even,
4

b−a , if b− a− 1 is odd.

When n = 1 and A(t) = 1, (1.1) reduces to

x∆
2
(t) +B(t)xσ(t) = 0. (1.4)

In 2002, Bohner et al. [1] investigated (1.4) under the assumptions x(a) = x(b) = 0 and

x(t) ̸≡ 0 for t ∈ [a, b]T and B : [a, b]T −→ (0,∞) is rd-continuous, and obtained the following

Lyapunov inequality ∫ b

a
B(t)∆t ≥ b− a

C
,

where C = max{(t− a)(b− t) : t ∈ [a, b]T}.

In 2006, Wong et al. [12] investigated the following dynamic equation

(A(t)x∆(t))∆ +B(t)xσ(t) = 0 (1.5)

under the assumptions x(a) = x(b) = 0 and A ∈ Crd([a, b]T, (0,∞)) is monotone and B ∈

Crd([a, b]T,R) , and showed that if x(t) ̸≡ 0 for t ∈ [a, b]T is a solution of (1.5), then

∫ b

a
max{B(t), 0}∆t ≥


A(a)(b−a)
A(b)C , if A is increasing,

A(b)(b−a)
A(a)C , if A is decreasing,
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where C = max{(t− a)(b− t) : t ∈ [a, b]T}.

For some other related results on Lyapunov inequality, see, for example, [4,6,8, 11].

2 Main Result and its Proof

For any x ∈ Rn and any A ∈ Rn×n (the space of real n× n matrices), denote by

|x| =
√
xTx and |A| = sup

x̸=0

|Ax|
|x|

the Euclidean norm of x and the matrix norm of A respectively, where CT is transpose of a

n×m matrix C. It is easy to show

|Ax| ≤ |A||x|

for any x ∈ Rn and any A ∈ Rn×n. Let A ∈ Rn×n is a symmetric matrix, we say that A is

semi-positive definite (resp. positive definite), written as A ≥ 0 (resp. A > 0), if xTAx ≥ 0

(resp. xTAx > 0) for all x ∈ Rn. If A is semi-positive definite (resp. positive definite), then

there exists a unique semi-positive definite matrix (resp. positive definite matrix), written as
√
A, such that [

√
A]2 = A.

Lemma 1 Let A(t) > 0 be an integrable real n × n matrix-valued function, u, v ∈ [a, b]T and

x be an integrable real vector-valued function. Then∫ u

v
|
√
A(t)x△(t)|2∆t ≥ |x(u)− x(v)|2∫ u

v |[
√
A(t)]−1|2△t

,

where C−1 denote the inverse matrix of C.

Proof Write W = x(u)−x(v)∫ u

v
|[
√

A(t)]−1|2△t
. Then

∫ u

v
|
√
A(t)x△(t)− [

√
A(t)]−1W |2△t ≥ 0,

which implies ∫ u

v
(
√
A(t)x△(t)− [

√
A(t)]−1W )T (

√
A(t)x△(t)− [

√
A(t)]−1W )△t

=

∫ u

v
|
√
A(t)x△(t)|2△t−

∫ u

v
W T {[

√
A(t)]T }−1

√
A(t)x△(t)△t

−
∫ u

v
[x△(t)]T [

√
A(t)]T [

√
A(t)]−1W△t+

∫ u

v
|[
√
A(t)]−1W |2△t

=

∫ u

v
|
√
A(t)x△(t)|2△t− 2

∫ u

v
W Tx△(t)△t+

∫ u

v
|[
√
A(t)]−1W |2△t

≥ 0.
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That is

∫ u

v
|
√
A(t)x△(t)|2△t ≥ 2

∫ u

v
W Tx△(t)△t−

∫ u

v
|[
√
A(t)]−1W |2△t

≥ 2

∫ u

v
W Tx△(t)△t−

∫ u

v
|[
√
A(t)]−1|2|W |2△t

= 2W T (x(u)− x(v))−W TW

∫ u

v
|[
√
A(t)]−1|2△t

=
|x(u)− x(v)|2∫ u

v |[
√
A(t)]−1|2△t

.

This completes the proof of Lemma 1.

We now can state and prove our main result.

Theorem 1 If (1.1) has a solution x(t) satisfying x(a) = x(b) = 0 and x(t) ̸≡ 0 for t ∈ [a, b]T,

then ∫ b

a
|
√
B(t)|2∆t ≥

∫ b
a |[

√
A(t)]−1|2△t

f(d)
,

where f(d) = max{
∫ t
a |[

√
A(τ)]−1|2△τ

∫ b
t |[

√
A(τ)]−1|2△τ : t ∈ [a, b]T}.

Proof Since |x(t)|2 is continuous in [a, b]T, we see that there exists an c ∈ (a, b)T such that

|x(c)|2 = max{|x(t)|2 : t ∈ [a, b]T} > 0.

Then we have

M

∫ b

a
|
√
B(t)|2∆t =

∫ b

a
|
√
B(t)|2M∆t ≥

∫ b

a
|
√
B(t)|2|xσ(t)|2∆t

≥
∫ b

a
|
√
B(t)xσ(t)|2∆t =

∫ b

a
(
√
B(t)xσ(t))T

√
B(t)xσ(t)∆t

=

∫ b

a
(xσ(t))T [

√
B(t)]T

√
B(t)xσ(t)∆t =

∫ b

a
(xσ(t))TB(t)xσ(t)∆t

= −
∫ b

a
(xσ(t))T (A(t)x△(t))△∆t

= −
∫ b

a
((x(t))TA(t)x△(t))△∆t+

∫ b

a
((x(t))T )△A(t)x△(t)∆t

=

∫ b

a
((x(t))T )△A(t)x△(t)∆t =

∫ b

a
|
√
A(t)x△(t)|2∆t

=

∫ c

a
|
√
A(t)x△(t)|2∆t+

∫ b

c
|
√
A(t)x△(t)|2∆t

≥ |x(c)− x(a)|2∫ c
a |[

√
A(t)]−1|2△t

+
|x(b)− x(c)|2∫ b

c |[
√
A(t)]−1|2△t

(by Lemma 1)

= M

∫ b
a |[

√
A(t)]−1|2△t∫ c

a |[
√
A(t)]−1|2△t

∫ b
c |[

√
A(t)]−1|2△t
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≥ M

∫ b
a |[

√
A(t)]−1|2△t

f(d)
.

That is ∫ b

a
|
√
B(t)|2∆t ≥

∫ b
a |[

√
A(t)]−1|2△t

f(d)
.

This completes the proof of Theorem 1.
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