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Abstract 

A new hydrocarbon product distribution model for Fischer-Tropsch synthesis reaction has been studied on CO-

Ni-ZrO2 catalyst in a fixed bed reactor. Artificial Neural Network technique in Fischer-Tropsch synthesis has 

been taken into consideration. Response surface methodology was applied to investigate the effects of operating 

variables (Temperature and space velocity) and optimization. The selectivity model was investigated for CH4, 

C2, C3, C4 and CO2. The R2 and R2 adj values indicated a good fit for all models. In a lower space velocity the 

amount of produced methane increases with increasing temperature. Ethylene and propylene selectivity 

increased with increasing temperature and was decreased with increasing space velocity. The optimal condition 

for the production of ethylene and propylene, was found to be in a space velocity of 7.86 (h-1) and the 

temperature of 530.14 K. 
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1. Introduction 

Fischer-Tropsch (FT) synthesis is a process in which the synthesis gas (a mixture of hydrogen and carbon 

monoxide derived from natural gas and coal) is converted to a wide range of hydrocarbon products [1-

5].However, FT synthesis is non-selective and produces a wide range of light gases and distillates, including 

olefins, paraffins and oxygenated products [6.7]. The diversity in composition of FT products reflects a complex 

set of surface reactions, where by CHR2 Runits formed by the hydrogenation of CO are "monomers" in a stepwise 

oligomerization process. At each stage of growth, the adsorbed hydrocarbon species may be desorbed, 

hydrogenated to form primary FT products, or react with another monomer to continue chain growth [8-10]. 

Given the much time and money spent on the tests and their effectiveness, the standard experimental design and 

statistical approaches can be used as an efficient tool in complex catalytic reactions selectivity modeling like FT 

synthesis. Statistical approaches and experimental design has been took into consideration in a lots of 

researches. Although Artificial Neural Network (ANN) techniques in FT synthesis is very rarely taken into 

consideration Adibet al, applied ANN and Genetic Algorithms for Modeling and Optimization of FT synthesis 

on the CO/AlR2ROR3Rcatalyst [11]. Chen and his colleagues, for the design and selection of a Co-Mo catalyst 

promoted with potassium to produce FT synthesis hydrocarbons used the fractional factorial design [12]. 

Calemma et al, investigated the effects of operating conditions on the production of FT synthesis hydrocarbons 
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in the factorial design, and the good results were achieved [13]. Faryas and colleagues have studied the effect of 

potassium as an iron catalyst promoter and also the changes in temperature and pressure based on the average 

carbon number and distribution in FT synthesis using design of experiments and statistical analysis [14].Sharma 

and colleagues have developed artificial neural network models on Co/AlR2ROR3R-SiOR2R catalyst that subsequently 

dependence of degree of conversion and steady state concentrations of the main products of FT synthesis were 

modeled to operating conditions [15].Shiva and coworkers applied the combined response surface experimental 

design and artificial neural network to determine the macro-micro kinetic equations for the conversion of 

synthesis gas to light olefins over iron-cobalt catalyst [16]. 

In this study, by using experimental data from reference [17] a hybrid approach was used to model the FT 

synthesis liquid hydrocarbon products selectivity on a 31TCO-Ni-ZrOR2Rcatalyst31T. In this method, first using an ANN 

the behavior of the catalytic system has been simulated. Then using an experimental design in a suitable 

software and giving corresponding output from ANN, evaluation and development of statistical model for each 

of the products of the reaction was studied. 

2. Modeling 
2.1 Artificial Neural Network (ANN) 

These networks are built with inspiration from the human brain. As the brain is a highly complex, nonlinear and 

parallel data processing system which is formed from structural units called neurons or neurons with strong 

connections, an ANN is made similar to human brain biological structure and the body neural network and Like 

the brain is able to learning, decision-making system and generalization. These networks do not require 

mathematical models and like humans learn experience and then extend this experiences [18]. 

2.1.1 Structure of Artificial Neural Network 

Neural networks are composed of three layers including an input layer, an intermediate layer (hidden layer) and 

output layer. Input layer receives the input data and regard to the strength of association with the next layer, 

sends the input signal to the subsequent layer. The middle layer and the number of its neurons must be carefully 

selected to give the appropriate output. Neuron is the smallest unit of an ANN which forms the neural network 

functions. Outline of an ANN is shown in Fig.1. 

 
Fig.1 Artificial Neural Network structure [19] 

2.1.2 Artificial Neural Network Training 
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ANN should be configured in such a way that with the set of inputs, a set of desired outputs will be created. 

There are different methods for determining the strength of the connection. One of these ways is to determine 

directly using prior knowledge. Another method is neural network training using teaching patterns and letting it 

change the weights based on educational legislation. 

According to the trial and error, the system will compare their results with the results given by experts as long as 

they reach a certain level of accuracy. With each experiment the weights assigned to the inputs will change until 

the desired results be obtained [20]. 

Using training algorithms and empirical data the network is trained. Various training algorithms have been 

developed according to the different applications of ANN. In this study LM P

5
P algorithm is used to train the 

networks. MSE function was also used for all networks. 

To evaluate the performance and behavior of neural networks, the correlation coefficient (R) which is the most 

recognized method of regression analysis in neural networks has been used in this research. This coefficient is 

achieved through the correlation below [21]. 

𝑅 = 1 − (
∑ (𝑎𝑖 − 𝑝𝑖)2𝑁
𝑖=1

∑ 𝑝2𝑁
𝑖=1

) 

Where pRi Ris the output of the network and aRiR is the experimental value. It should be noted that how much the 

coefficient is closer to one, implies higher adaptation of experimental data with the predicted values associated 

with them. 

In this study, the network consists of one hidden layer with two input neurons was used. Input variables are 

temperature and space velocities and the selectivity of products were considered as the outputs of the networks. 

Among the 21 experimental data, 15 data for training the network, 3 data for testing and 3 data were used to 

assess the network. Specifications of the trained network are listed in Table 1. 

Table 1: Specifications of the trained network 

Number of Neurons 
Trained Networks 

Hidden Layer Output Layer Input Layer 

6 1 2 SelectivityCHR4 

8 1 2 SelectivityCR2 

7 1 2 SelectivityCR3 

8 1 2 SelectivityCR4 

7 1 2 SelectivityCR5RP

+ 

7 1 2 SelectivityCOR2 

 

2.2 Experimental design and mathematical modeling 
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In this study, Response surface methodology RSM method analysis were applied to investigate the effects of 

operating variables and optimization. RSM is a collection of mathematical and statistical techniques for 

modeling and analysis of problems in which a response of interest is influenced by several variables [22].Given 

that there are two process variables, experimental design of Box-Wilson Design (BWD) was selected to develop 

a statistical model. Three operations and process factors - Temperature (513-533 K) and space velocity (5-25 hP

-

1
P) in the atmospheric pressure - were considered as variables of the system and the selectivity of the products 

was determined as the process response. Analysis of variance (ANOVA) was used for graphical analyses of the 

data to obtain the interaction between the process variables and the responses. The response surface 

methodology technique was applied to understand the interaction of various variables (temperature and space 

velocity) and then used to find the optimum conditions of the main variables that affect the response and also 

provide an equation to predict the selectivity of the products in other conditions with a high confidence of 

accuracy. 

3.  Results and Discussion 

To evaluate the effect of process temperature and space velocity on the selectivity of hydrocarbon models, Box-

Wilson Design (BWD) was applied consisting of 13 experiments. (5 repeat the test with a choice of 1.5 for α). 

The design and the whole extreme values are reported in Table 2. 

Table 2: Experimental conditions and results of Box-Wilson Design (BWD) for 31TCO-Ni-ZrOR2R31TR Rcatalyst. 

Selectivity GHSV 
(hP

-1
P) 

Temp. 
(K) Test 

COR2 CR5RP

+ CR4 CR3 CR2 CHR4 

76.4287 12.2157 7.132 3.6525 1.2778 4.1319 15 513 1 

34.899 21.6624 1.5186 10.3276 3.6055 14.0109 7.86 530.14 2 

72.6228 12.0885 8.4857 3.9682 1.7378 5.6511 15 523 3 

72.6228 12.0885 8.4857 3.9682 1.7378 5.6511 15 523 4 

72.6228 12.0885 8.4857 3.9682 1.7378 5.6511 15 523 5 

93.9566 1.5629 28.0613 0.8509 0.32 0.8961 25 523 6 

33.9569 3.6215 1.0961 0.9591 0.5644 1.8655 22.14 515.86 7 

75.6544 10.0846 8.1257 5.2547 2.2039 7.3307 15 533 8 

91.9578 2.5966 20.2615 1.9949 0.3726 2.1486 22.14 530.14 9 

38.854 28.336 17.0991 10.6881 3.4091 11.7922 5 523 10 

72.6228 12.0885 8.4857 3.9682 1.7378 5.6511 15 523 11 

72.6228 12.0885 8.4857 3.9682 1.7378 5.6511 15 523 12 

96.2074 13.4234 11.5323 9.4945 1.4188 6.7164 7.86 515.86 13 

44TWHSV: Weight hourly44T Space Velocity 
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Three replicates of the central points were performed along the design space in order to estimate the 

experimental error and checking of the analysis repeatability. The experimental plan is also shown in Table 1. It 

can be seen that the responses of this design are selectivity of CHR4R (CHR4R sel), CR2R (CR2R sel), CR3R (CR3R sel), CR4R (CR4R 

sel), CR5RP

+
P (CR5RP

+
P sel) and COR2 R(COR2R sel). The maximum CR2R and CR3R selectivity is desired. 

3.1. ANOVA analysis 
To select a model that meets the needs of this research, it is necessary to carefully evaluate the data and analyze 

them. In this regard, many equations (such as cubic, Quadratic, 2FI) have been investigated. Effective terms are 

identified and applied in the final selectivity equations. The terms that appear in the equation and causes the 

disorder identified as the meaningless terms and removed from the equation. Finally, with the conducted 

investigation the desired selectivity model can be achieved. The results of ANOVA (analysis of variance) for 

product selectivity models can be observed in Table 3. 

 
Table 3: ANOVA results of product selectivity models 

P-Value RP

2
PRadj RP

2 Sum of Squares Selectivity Model 

0.0001< 0.9974 0.9985 161.79 CHR4 

0.0001< 1 1 12.02 CR2 

0.0001< 0.9727 0.9796 127.76 CR3 

0.0001< 1 1 654.62 CR4 

0.0001< 1 1 633.23 CR5RP

+ 

0.0001< 1 1 5349.94 COR2 

 

As indicated in Table 2, models are statistically significant and acceptable because of the optimum amount of P-

Value. The RP

2
P and RP

2
Padj values which are significant for all models also indicate a good fit of the data by the 

model. Table 4 shows the final equations for the selectivity of these products. 
Table 4: Final equations for products selectivity 

Model Selectivity 

−580.12505 + 1.13955𝐴 + 49.55418𝐵 − 0.096258𝐴𝐵 − 1.0717𝐵2 + 0.000021𝐴𝐵2 CHR4 

−8490.64399 + 32.16077𝐴 + 1063.14535𝐵 − 4.04082𝐴𝐵 − 0.030436𝐴2 − 33.20299𝐵2
+ 0.003838𝐴2𝐵 + 0.12652𝐴𝐵2 − 0.0001205𝐴2𝐵2 CR2 

−21.17559 + 0.072687𝐴 − 1.13942𝐵 + 0.019927𝐵2 CR3  

−138071 + 529.02𝐴 + 19548.69954𝐵 − 74.75395𝐴𝐵 + 0.50662𝐴2 − 700.09207𝐵2
+ 0.071451𝐴2𝐵 + 2.67245𝐴𝐵2 − 0.00255𝐴2𝐵2 CR4 

−94912.25339 + 360.94307𝐴 + 10540.486𝐵 − 40.05968𝐴 − 0.34301𝐴2 − 291.93634𝐵2
+ 0.038053𝐴2𝐵 + 1.10946𝐴𝐵2 − 0.0011𝐴2𝐵2 CR5RP

+ 
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+86255.16655 − 320.63376𝐴 + 5806.4202𝐵 − 22.81653𝐴𝐵 + 0.29779𝐴2 − 728.477𝐵2
+ 0.022415𝐴2𝐵 + 2.78704𝐴𝐵2 − 0.002666𝐴2𝐵2 COR2 

A: Temperature and B: Space velocity 

3.2. Optimization of reaction conditions  
To investigate the optimal conditions for the FT synthesis hydrocarbon products selectivity, three-dimensional 

response surface plot is used. Three-dimensional response surface plot, allowing the ratio of products selectivity 

changes to the process variables to be well defined. Fig.2indicates the dependence ofCHR4R selectivity towards 

temperature and space velocity. 

 

 
Fig. 2 CHR4R selectivity towards temperature and space velocity in atmospheric pressure. 

Fig.2 shows that the maximum amount of methane is at high temperatures and low space velocity and it is 

because of the thermal decomposition of heavier products. The amount of methane will significantly reduce 

when the space velocity is increased. In Fig. 2, it can be clearly seen that with the increase of space velocity, 

temperature has little influence on the selectivity of CHR4R, because the space velocity increases, the effect of 

temperature is very light and is considered negligible. However, in low space velocity methane selectivity 

increases with increase in temperature and reaches its highest value. 

As can be seen in Fig.3, the trend of produced ethylene changes is similar to the changes of methane respect to 

the temperature and space velocity and the maximum amount of ethylene is produced at low space velocities 

and high temperatures. The main reasons for this subject may be thermal failure of the heavy products caused by 

increase in temperature. 

Fig.3 also shows that at high temperatures, with increasing space velocity, ethylene selectivity decreases. 

However, at lower temperatures, increasing the amount of space velocity to about 31/13 (hP

-1
P) has a negligible 

effect on the amount of ethylene selectivity and by increasing the temperature, higher selectivity will be 

achieved by increasing the space velocity.  
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Fig. 3 CR2R selectivity towards temperature and space velocity in atmospheric pressure. 

Three-dimensional diagram of CR3R selectivity changes with respect to two variables, temperature and space 

velocities are shown in Fig. 4. As is evident in all parts of the graph, increasing the temperature enhances the 

selectivity of propylene and increase in space velocity reduces the selectivity. The reason of propylene increase 

can be interpreted by the fact that by increasing the temperature the inclination for thermal failure of heavier 

hydrocarbons enhances which lead to the formation of light products. Also the space velocity has the greatest 

effect on propylene selectivity. 

 

Fig. 4 CR3R selectivity towards temperature and space velocity in atmospheric pressure. 

Fig. 5 illustrates the CR4R selectivity towards temperature and space velocity and the influence of temperature of 

the selectivity can be divided into two stages. First, increasing the selectivity of CR4R respect to boosting the 

temperature and then CR4R selectivity diminishing stage. At low space velocity, by increase in temperature the first 

stage is in the range of less than second stage. However, the increase in the space velocity increases the range of 

first stage while the second area is reduced. The reason for this is that in the beginning of the temperature 

increasing, the decomposition of heavy hydrocarbons increases the amount of CR4R and followed by a marked rise 

in temperature, the probability of CR4R decomposition is increased and its selectivity is reduced. It can be also seen 
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that the maximum amount of CR4R production occurs at the temperature of 527 K and The space velocity of 14/22 

(hP

-1
P). 

 

Fig. 5 CR4R selectivity towards temperature and space velocity in atmospheric pressure. 

Fig.6 shows theCR5RP

+
P selectivity changes respect to the temperature and space velocity. It can be observed that at 

low space velocity with increasing temperature, the CR5RP

+
P selectivity increases and reaches its maximum value at a 

temperature of 525 K. The higher the temperature, the higher is the desire to increase its selectivity is reduce the 

possibility of thermal decomposition. The higher increase in temperature enhances the possibility of thermal 

decomposition and lead to the decrease in selectivity. It can also be inferred from Figure 6 that at space 

velocities higher than 15 (hP

-1
P) temperature has a very little effect on CR5RP

+
Pselectivity and remains almost constant. 

 

Fig. 6 CR5RP

+
P selectivity towards temperature and space velocity in atmospheric pressure. 

Fig.7 shows the response curve of COR2R selectivity with respect to temperature and space velocities. It can be 

inferred that at low space velocity with increasing temperature, COR2R selectivity has been decreased and this 

trend has been changed so that completely reversed in high space velocity. Fig.7 also shows that the highest 

amount of COR2Rproduction occurs at a temperature of approximately 527 K and a high space velocity. 

482 
 

http://www.ijiset.com/


IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 4, April 2016. 

www.ijiset.com 

ISSN 2348 – 7968 

 

 

Fig. 7 COR2R selectivity towards temperature and space velocity in atmospheric pressure. 

4. Conclusions 

In this study selectivity model of the Fisher - Tropsch synthesis reaction products on 31TCO-Ni-ZrOR2R31Tcatalyst in a 

fixed bed reactor was investigated. The results of selectivity model indicate that in a lower space velocity 86/7 

(hP

-1
P) the amount of produced methane increases with increasing temperature. However, its value decreases with 

increasing space velocity. Ethylene and propylene selectivity increased with increasing temperature and was 

decreased with increasing space velocity. Therefore, the optimal condition for the production of ethylene and 

propylene, was found to be in a space velocity of 86/7 (hP

-1
P) and the temperature of 14/530 K.COR2R selectivity was 

also observed to be proportional to the temperature at higher space velocity while at lower space velocity there 

was an inverse relation with temperature. 
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