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Abstract: In this paper, we propose and analyze a non-monotone conic trust region method with 
line search for unconstrained optimization problem. Different from the usual trust region methods, 
we use a new non-monotone Wolfe-type line search to get the new point if the trial step is not 
accepted. The algorithm can be regarded as a combination of non-monotone, line search and conic 
trust region method. Theoretical analysis indicates that the new method has a global convergence 
under reasonable assumptions.  
Keywords: non-monotone; conic trust region method; unconstrained optimization; Wolfe-type 

line search; global convergence. 
1. Introduction 

We consider the unconstrained optimization problem:  

           min ( ), ,nf x x R∈                                         (1.1) 

where ( ) : nf x R R→  is continuously differentiable.  

   Traditional iterative methods for solving (1.1) are either line search method or trust region 
method. Trust region method has strong convergence and robustness, can be applied to 
ill-conditioned problems. Another advantage of trust region is that there is no need to require the 
approximate Hessian matrix of the trust region sub-problem to be positive definite. So trust region 
methods have been studied by many researchers [1-4].  

However, when the trial step is not successful, one rejects it, reduces the trust region radius 
and resolves the sub-problem, which can be costly. Nocedal and Yuan [5] proposed a new type of 
trust region method which combine line search and trust region method. Recently, non-monotone 
techniques have been studied by many authors since Grippo et al. [6]. Many authors have 
generalized the non-monotone strategy to trust region methods and presented non-monotone trust 
region methods [7-9]. 
   The traditional quadratic model methods often produce a poor prediction of the minimizer of 
the function, when the objective function has strong non-quadratic. In order to overcome the 
problem, Qu et al. [10] proposed a new trust region sub-problem based on the conic model for 
unconstrained optimization: 
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where ( ), ( ), n n
k k k k kf f x g f x B R ×= = ∇ ∈  is a symmetric matrix which is the Hessian matrix 

or its approximation of ( )f x  at the current point kx , ⋅  denotes to the Euclidean norm, 

( )kc s  is called conic model, kh  is usually called horizontal vector which is the associated 

vector for conic model and k∆  is conic trust region radius. If 0kh = , the conic model reduces 

to a quadratic model. Therefore, the conic model methods are the generalization of the quadratic 
model methods. 
   In this paper, we combine the sub-problem (1.2) with non-monotone technique proposed in [8] 
and Wolfe-type line search [11] to propose our new algorithm. This paper is organized as follows. 
We describe our new non-monotone trust region method with line search based on conic model in 
Section 2. The properties of this new algorithm and the global convergence property are given in 
Section 3. Finally, some conclusions are addressed in Section 4. 
 
2. Algorithm 

In this section, we describe our new non-monotone conic trust region method with Wolfe-type 
line search algorithm. We obtain the trial step by solving the conic model sub-problem (1.2). Let 

ks  be the solution to (1.2). Then either 1kx +  is accepted or the trust region radius is reduced 

according to the ratio kr  between the actual reduction of the objective function  

( )k k k kAred D f x s= − +                              (2.1) 

and the predicted reduction  
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and 1 min max[ , ]kη η η− ∈ , min [0,1)η ∈  and max min[ ,1)η η∈ . If 0kr c≥ , where 0 0c > , we 

 accept ks  as a successful step and let 1k k kx x s+ = + . Otherwise we compute ki , the minimum 

 positive integer i  satisfying  
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where (0,1)ς ∈ , 1
2(0, )δ ∈ , 0γ >  and (0,1)λ∈  are constants, then we use the Wolfe-type 
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line search to generate the next point by using 1
ki

k k kx x sλ+ = + . 

Algorithm 2.1 

Step 1.   Given 0
nx R∈ , 0 0∆ > , 0 0h = , 00 1c< < , 1 2 30 1c c c< < < < , 0 1λ< < , 

1
20 δ< < , 0 1ς< < , 0ε > , 0

n nB R ×∈  is a symmetric matrix. Set 0k =  and  

choose parameters 1 min max[ , ]kη η η− ∈ , min [0,1)η ∈  and max min[ ,1)η η∈ . 

Step 2.   Compute kg . If kg ε< , stop. Otherwise, go to Step 3. 

Step 3.   Solve the sub-problem (1.2) for ks . Compute kD , kAred , kPred  and kr . 

Step 4.   If 0kr c≥ , set 1k k kx x s+ = +  and go to the Step 6; otherwise, go to Step 5. 

Step 5.  Compute ki , the minimum positive integer i  satisfying (2.5). Set ki
ka λ= , 

1k k k kx x a s+ = + . 

Step 6.   Compute 1k+∆  as 

1 2 0
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Step 7.   Update kh  and the symmetric matrix 1kB + . Set 1k k= + , go to Step 2. 

We define  

0{ }kI k r c= ≥  and 0{ }kJ k r c= < . 

 
3. Convergence 

In this section, we will prove the global convergence property of Algorithm 2.1. The following 
assumptions are necessary to analyze the convergence property. 

(H1) The level set 0 0( ) { ( ) ( )}nL x x R f x f x= ∈ ≤  is bounded for any given 0
nx R∈ .  

(H2) There exists a constant 1 0K > , such that 
2

1
T

kK s s B s≤  for all k . 

(H3) There exists a constant (0,1)σ ∈ , such that, for all k , k kh σ∆ ≤ . 

Lemma 1. If ks  is the solution of sub-problem (1.2) and suppose that (H1-H3) hold. Then there 

exist a positive scalar v  such that 
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          min{ , } min{ , }k k

k k

g g
k k k k kB BPred v g v g s≥ ∆ ≥                     (3.1) 

               (1 ) min{ , } 0k

k

gT
k k k k Bg s v gs≤ − − ∆ ≤                          (3.2) 

hold for all k . 
Proof. The proof is analogous to Theorem 3.1 in [10]. 

Lemma 2. Let { }kx  be the sequence generated by Algorithm 2.1. Then, for all k  and 

0 vγ< < , we have 

                       1 1k k kf D D+ +≤ ≤                                      (3.3) 

Proof. If k I∈ , i.e., 0kr c≥ . By the definition of kr  and 0kr c≥ , we have 

1 0 0 min{ , } 0k

k

g
k k k k k BD f c Pred c v g+− ≥ ≥ D ≥                  (3.4) 

Therefore, we have 1k kD f +≥ . 

If k J∈ , i.e., 0kr c< . From (2.5) and (3.2), we have  

1 ( min{ , }) 0k

k

gT
k k k k k k k Bf D a g s gδ g+ − ≤ + D ≤                      (3.5) 

So, we have 1k kD f +≥ . 

From (2.4), (3.4) and (3.5), we have 

1 1 1 1( ) ( 1)( ) 0k k k k k k k k k kD D D f f D D fη η+ + + +− = − + − = − − ≤                (3.6) 

1 1 1 1 1 1( ) ( ) 0k k k k k k k k k kD f f D f f D fη η+ + + + + +− = + − − = − ≥                 (3.7) 

These inequalities yield 1 1k k kf D D+ +≤ ≤ . 

Remark: Lemma 2 indicates that { }kD  is not increasing monotonically and is convergent. 

Lemma 3. (See Lemma 4 in [11]) Suppose that the sequence { }kx  is generated by Algorithm 

2.1. For any k J∈ , the non-monotone line search terminates in a finite number of steps. 

Lemma 4. Suppose that (H1-H3) hold, and the sequence { }kx  is generated by Algorithm 2.1. 

Then there is a constant 0 1ω< <  such that ka ω>  holds for all k J∈ . 

Proof. There exists a constant 1M K>  such that 2 ( )f x M∇ ≤ . We consider two cases: 

Case 1. If 1ka = , the conclusion holds obviously. 
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Case 2. If 1ka < , from the Algorithm 2.1, we know that ka  is the largest step-size which 

assures the descent of the objective function at the current point kx . Notice that 0 1λ< < , we 

can obtain 1
k ka aλ− > . So we have 

          1 1( ) ( min{ , })k

k

gT
k k k k k k k k k Bf x a s D a g s gλ δλ g− −+ > + + D             (3.8) 

By Taylor’s expansion, we obtain  

         1 1 2 2 21
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T T
k k k k k k k k k kf x a s f a g s a s f sλ λ λ x− − −+ = + + ∇                 (3.9) 

where 1( , )k k k k kx x a sx λ−∈ + . Using (3.8) and (3.9), we get 
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Using the formula (3.11) and above assumptions, we have 
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We obtain ka ω>  for all k J∈ , where 
2

1
2

(1 )2
2(1 )( min{ , })k k
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Lemma 5. (See Lemma 4 in [11]) Suppose that (H1-H3) hold and f∇  is Lipschitz continuous, 

i.e., there exists a constant 0L >  such that ( ) ( )f x f y L x y∇ −∇ ≤ − . And the sequence 

{ }kx  is generated by Algorithm 2.1. Then 

                   2
1( min{ , })k

k

g
k k k kBg D Dπ +D ≤ −                         (3.13) 

where 2
(1 ) (1 ) ( )k v v

L
η δ σ γπ − − −

∆
= . 

Lemma 6. (See Lemma 3.7 in [12]) Suppose that (H1-H3) hold, and the sequence { }kx  is 

generated by Algorithm 2.1. Suppose that there is a positive number 0ε >  such that kg ε≥  

for all k . Then  

                           lim min{ , } 0
kk Mk
ε

→∞
∆ =                             (3.14) 

where 
0

1 maxk ii k
M B

≤ ≤
= + . 
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Theorem 7. Suppose that (H1-H3) hold, and the sequence { }kx  generated by Algorithm 2.1, and 

there exists a constant 0∆ >  such that k∆ < ∆ . Then we have 

                         lim 0.kk
g

→∞
=                                      (3.15) 

Proof. From Lemma 5, we have  

                    2
10 ( min{ , })k

k

g
k k k kBg D Dπ +≤ D ≤ −                     (3.16) 

And from Lemma 5, we also know  

                       1lim ( ) 0k kk
D D +→∞

− =                                  (3.17) 

Therefore, we can obtain 

                       lim min{ , } 0k

k

g
k k Bk

g
→∞

∆ =                             (3.18) 

That is lim 0kk
g

→∞
= . 

Hence, the proof is completed. 
 
4. Conclusions 

In this paper, we propose a new non-monotone trust region method with line search based on 
the conic model. It is useful to take advantage of non-monotone Wolfe-type line search which can 
find an iterative point easily if the trial step is not accepted. The global convergence result of the 
new proposed method is proved under some mild conditions. 
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