
VISUALIZING CLASS DIAGRAM USING
OrientDB DATA-STORE

Sawinder Kaur Karamjit Kaur

CSED, Thapar Univesity CSED, Thapar University

 Patiala (Punjab), India Patiala (Punjab), India

sawinderkaurvohra@gmail.com karamjit.kaur@thapar.edu

Abstract— Relational databases are providing storage for
several decades now. The term NoSQL broadly covers all non-
relational databases that provide scalable and schema-less
model. NoSQL databases are used by major organizations
operating in the era of Web 2.0. Different categories of NoSQL
databases are key-value pair, document, column-oriented and
graph databases which enable programmers to visualize the
data closer to the format used in their application. In this paper,
class diagram has been merged with OrientDB through Java
API to visualize the class diagram as OrientDB graph.
OrientDB is the only database which supports both graph and
document database, also provides support for both inheritance
and polymorphism.

Keywords- OrientDB, NoSQL, Class Diagram.

I. INTRODUCTION

 NoSQL is a next generation [6] database which addresses
these properties: non-relational, non-ACID[12], distributed,
open-source and horizontally scalable , schema-less. The
original intention has been modern web-scale databases. Rise
of NoSQL [15] databases are challenging the dominance of
relational databases (dominated the software industry for
longer period). There is an impedance mismatch between the
relational data structures and the in-memory data structures.
A NoSQL database allows developers to develop without
having to convert in-memory structures to relational
structures.

 Key-value is the simple NoSQL data stores to use from an
API perspective. User can get the value for a key, put the
value for a key or delete a key from the data store. The value
is just stored without knowing what is stored inside. Key-
value stores always use primary-key and use a hash table
where a pointer points to a particular item of data. Key-
based lookups results in lesser query execution time since
values can be anything like objects, hashes etc. resulting in
flexible and schema-less model appropriate for today’s
unstructured data, hence gives a great performance and can
be easily scaled. Key-value databases are Riak(Basho) [8],
Redis(VMware) [8], Amazon DynamoDB [5], and
Couchbase [15]. To update part of a value or query the
database, this method is not ideal.

 Documents are the prime concept in document databases.
The database stores and retrieves documents which can be
XML, JSON, BSON etc. These documents are self-
describing and form hierarchical tree data structures which
can consist of maps, collections, and scalar values. For
example one could search for all documents in which “City”
is “Patiala” that would deliver a result set containing all
documents connected with any “3 Storey Office” that is in
that particular city. Apache CouchDB[9] and MongoDB [15]
are popular examples of a document store. CouchDB
uses JSON to store data, JavaScripts its query language
using MapReduce and HTTP for an API. MongoDB is
designed to be able to face new challenges such as horizontal
scalability, high-availability and flexibility to handle semi-

structured data. MongoDB has typical applications in content
management systems, mobiles, gaming and archiving.
Document style databases are schema-less so it makes
addition of fields easy to JSON without defining changes
first.

 In Column-oriented/ Wide-table data stores, data is stored
in cells grouped in columns of data rather than as rows of
data. Columns are logically grouped into column families.
Column families hold inside a virtually unlimited number of
columns that can be created at runtime or the definition of
the schema. Read and write is performed using columns
rather than rows. In comparison, most relational DBMS
reserve data in rows, the benefit of storing data in columns is
fast search, access and data aggregation [7]. Relational
databases store a single row as a continuous disk entry.
Different rows are stored in different regions on disk whereas
Columnar databases store all the cells corresponding to a
column as a continuous disk entry making the search and
access faster. For example: To query the titles from a bunch
of a million articles will be a heedful task while using
relational databases as it will go over each location to get
item titles. On other side, with just one disk access, title of all
the items can be attained. Popular open source column-
oriented databases are Hypertable [8], HBase [15] and
Cassandra [15]. Hypertable and HBase are derivatives of
BigTable where as Cassandra takes its features from both
BigTable and Dynamo.

 In Graph NoSQL Database, there is no rigid format of
SQL, tables and columns representation, a flexible
graphical design is instead used which is perfect to
address scalability concerns. It does not require a pre-
defined schema which leads to easier adaptation to schema
evolution. It allows to store entities and relationships amid
these entities. Relations are known as edges that can have
properties. Edges [9] have directional significance and nodes
are organized by relationships which allow you to find
interesting patterns among the nodes. The graphs can be
correlated and interpreted in different ways. Mostly, when
we store a graph-like structure in RDBMS, it is for a single
type of relationship, adding another relationship to the mix
usually means a lot of schema changes and data movement
which is easily done when graph database is used. In
relational databases graph is modelled beforehand based on
the Traversal one wants; if the Traversal changes, the data
will be changed whereas in graph databases, traversing the
joins or relationships is very fast [13]. The relationship
between nodes is not calculated at query time but is actually
prevailed as a relationship. Traversing persisted relationships
is faster than calculating them for every query. Example:
Social networking websites where relationships among data
are as important as data itself are best candidates for graph-
based storage. More than 20 graph databases are available of
which few are proprietary and others open-source, popular
ones are Neo4j [8], Titan [15], OrientDB [8], AllegroGraph
[15], InfiniteGraph [15] etc.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

341

mailto:sawinderkaurvohra@gmail.com
mailto:karamjit.kaur@thapar.edu
http://basho.com/riak/
http://redis.io/
http://www.couchbase.com/
http://en.wikipedia.org/wiki/CouchDB
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/API

OrientDB(Document+Graph) - OrientDB is a 2nd
Generation Distributed Graph Database [10] and the first
Multi-Model Open Source NoSQL DBMS that carries
together the power of graphs and the flexibility of documents
into one scalable high-performance [13] operational
database. First generation Graph Databases lack the features
that Big Data demands: multi-master replication[6],
sharding[6] and more flexibility for modern complex use
cases. OrientDB is incredibly fast as can store 220,000
records per second [10] on common hardware. Even for a
Document based database, the relationships are handled as in
Graph Databases with direct connections within records. You
can traverse parts of or entire trees and graphs of records
within few milliseconds. OrientDB supports schema-less,
schema-full and schema-mixed modes [10], has a strong
security profiling system based on roles and users,
supports SQL amongst the query languages. Being a
document database one can store any document on a vertex,
being a graph database one can introduce new edges and
properties. It allows schemas to be introduced at runtime.

 Class diagram with OrientDB helps to store the state of the
system. Almost for every system a domain model (or logical
information model) is framed which describes what
information the system must maintain. The state of the art for
shaping such models is to build an object-oriented class
diagram, typically in UML. This model represents classes
with their properties and associations among classes. With
most databases there is some impedance mismatch when
mapping the canonical model as in Relational model there is
no support for inheritance, polymorphism and relationships
have to be mapped into keys. In graph databases there is also
no support for polymorphism, inheritance and complex
properties introduces new vertices. A document database
also does not provide support for polymorphism and
provides very limited support for relationships. In OrientDB
the mapping eliminates all impedance mismatch as object
becomes a vertex, complex properties are handled by
documents, provides explicit support for relationships,
inheritance and polymorphism.

II. MOTIVATION

 To create a graph that contains a class diagram using the
Java API OrientDB so that it becomes easy to analyse how

the class diagram is depicted in graph database. It helps
to easily understand how the classes are related to
each other, how polymorphism is used. OrientDB
graph is easily extensible and this can be achieved
by adding information about methods or by
purporting the meta-data. In this manner
information can be managed about annotated
methods and released revisions.

 Projects need some extent of run-time configuration
where user could configure the rules of the data structures
stored and hence complexity increases. If a relational
database is used behind any application then high complexity
is seen between joins to retrieve the data. A schema-free
document database could simplify complexity problem.
OrientDB allows schemas to be introduced at runtime and
provide record level security which means any record or
class can be altered to extend any other - including vertices
and edges in the graph.

 To measure the performance based on response time of the
retrieved data using JAVA API OrientDB.

III. NoSQL DATA-STORES

 NoSQL referred to (not only SQL) or (non relational [3])
database which provides a mechanism
for storage and retrieval of data modelled different from the
tabular relations used in relational databases. They have
existed since the late 1960s, but did not obtain the NoSQL
signature until its popularity in the early twenty-first century
when Web 2.0 companies such
as Facebook, Google and Amazon.com [15]. NoSQL
databases are widely used in Bigdata, real-time web
[2] applications and also supports SQL like query languages.

A. DOCUMENT-ORIENTED DATA MODEL OR
DOCUMENT STORE

 Is designed for storing, retrieving, and managing
document-oriented information also called as semi-structured
data [3]. The popularity of the term document-oriented
database has grown [1]

with the help of the term NoSQL

itself. XML databases [4] are a subclass of document-
oriented databases. Document-oriented databases are
intrinsically a subclass of the key-value store [4], another
NoSQL database concept. Example the following document
is encoded in JSON.

{

 First_Name:”Saw”,

 Last_Name:”Kaur”,

 Hobby:”Swimming”

}

Data
processing

In a key-value store, the data is
contemplated to be inherently opaque to the
database.

In document-oriented system relies on
internal structure in order to extract
metadata.

Data storing Relational databases [11] store data in
separate tables defined by the programmer
where a single object may spread across
various tables.

Document databases store every
information for a given object in a single
instance.

TABLE 1: Comparison of document-oriented and relational
database.

B. KEY-VALUE STORE OR DATABASE

 Is designed for storing, retrieving, and managing
associative arrays, data structure. Dictionaries (data
structures) contain a collection of objects or records, which
have many different fields within them, each containing data.
These records are stored and fetched using a key that
uniquely distinguishes the record, and is used to quickly find
the data within the database.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

342

https://github.com/orientechnologies/orientdb/wiki/SQL
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_retrieval
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Real-time_web
https://en.wikipedia.org/wiki/Semi-structured_model
https://en.wikipedia.org/wiki/Semi-structured_model
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Collection_(abstract_data_type)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Database

KEY VALUE

K1 XXX,ZZ

K2 SSS,5647,8

K3 BBB,10/04/2016

K4 AAA,CCC

K5 AAAA,BBBB

Fig. 1.Key-Valued Database

Data
Structure

RDB pre-defines the data structure [11] in
the database as a series of tables containing
fields with well defined data types.

Key-value systems treat data as a single
opaque collection which have distinct
fields for every record.

Memory Optional values are represented by
placeholders in RDB

Key-value stores often use far
less memory as optimal values are not
represented in it.

TABLE 2:Comparison of key-valued and relational database

C. GRAPH-BASED DATA MODEL

 It uses graph structures for semantic queries with nodes,
edges and properties are used to represent and store the data.
A key concept of the system is the graph which directly
relates data items in the store.

 Fig. 2.Graph Database

D. COLUMN-BASED DATA MODEL

A column of a distributed data store is a NoSQL object of the
lowest level in a key space. It is a tuple which has three
elements [6] Unique name to refer the column, Value to tell
the content of column of different types, Timestamp to
determine the valid content. Example- In JSON notation
three columns are given in Fig3.

 Fig. 3.Column Database

E. DOCUMENT AND GRAPH DATABASE

 OrientDB can be used in multiple ways as it can be used
as document database, graph database giving competition to
MongoDB [15] and Neo4J [8][15]and also can be used as an
Object-Oriented Database. For better performance Database
integration is required which implies the integration [17] and
aggregation of data from dif databases within or outside the
organization and using the integrated data in many real time
applications. New technology like cloud computing[14],
Bigdata [2] came into existence, there is a need of sharing
the resources and need to achieve consistency also. There are
different platforms, different query languages, different data
models[16], different dependencies among databases and
applications so integration has become a capsule to solve this
problem.

IV. OrientDB

 OrientDB [10] as a document database can store
documents. OrientDB can take an arbitrary document, a
JSON document and can store it. After it has been stored one
can query it using path expressions. If only document
databases are used then it does not supports inheritance and
provides no support for relationships.

 OrientDB as a graph database which implement the
relationships as first class citizens called edges and edges
connect vertices. A vertex, in graph databases, is a simple
cluster of name-value pairs. In OrientDB each document in
document database acts as a vertex in graph database. If only
graph databases are used then it does not supports
inheritance, polymorphism. Complex properties introduces
new vertices even if not required, hence no individuality. In
OrientDB, mapping the two databases eliminates all
impedance mismatch.

V. CLASS DIAGRAM

 It represents a movie recommendation system where one
can login and rate the movies according to their aspects.
Users can add their favourite movie to the wishlist and can
remove from the wishlist. A new user has to create their
account and email verification will be done by the system.
The type of movie: action, fiction, love story etc. one selects,
similar type recommendations will be shown. When a movie
is selected, its name, its year and image will be shown when
data is retrieved from knowledge base. Based on the selected
movie, its aggregated rating will also be shown.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

343

https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Semantic_query
https://en.wikipedia.org/wiki/Distributed_data_store
https://en.wikipedia.org/wiki/NoSQL_(concept)
https://en.wikipedia.org/wiki/Keyspace_(data_model)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Timestamp

 Fig. 4. Class diagram of case study

V1. ANALYSING CLASS DIAGRAM USING

 ORIENTDB

 Fig. 7. Time required to retrieve and update the data

Fig. 5. Flowchart to represent class diagram in OrientDB

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

344

Fig. 6. Class Diagram in form of Graph

Vll. PERFORMANCE ANALYSIS

TABLE 3: Hardware Environment

 TABLE 4: Software Environment

VIII. CONCLUSION

 NoSQL is a complementary product for handling issues of
scalability, complexity and performance. Non-relational
databases provide many enhancements over traditional
relational databases [11] such as increased scaling across
commodity servers or cloud instances, non-adherence to
rigid schema for inserting data and hence ease in capturing of
different type data without many changes at schema level.

 In this paper, we discussed about NoSQL databases and
OrientDB which together provides better features by using
both document and graph databases. Class diagram is very
popular among application developers, but the concept
together with non-relational databases is yet to come. To the
best of our knowledge, there is no publication that explained
class diagram using OrientDB and querying in it to retrieve
and update the class diagram without affecting the other

classes. Due to limit on length, only two classes of NoSQL
Databases: Document-oriented and Graph-based databases
together have been covered in this paper. A case-study have
been explained and considered to illustrate the way of Class
diagram. With the help of five queries data relationship
between classes have been depicted through graph in
OrientDB and their performance have been noted down.

REFERENCES

[1]DB-Engines Ranking per database model category [Online]. Available:
http://dbengines. com/en/ranking_categories

[2]C Snijders, U Matza, UD Reips (2012). "'Big Data: Big gaps of
knowledge in the field of Internet". International Journal of Internet Science
7: 1–5

[3]Leavitt, Neal. "Will NoSQL Databases Live Up to Their Promise?".IEEE,
2010

[4]Grolinger, K. Higashino, W. A. Tiwari, A. Capretz, M. A. M.
(2013). "Data management in cloud environments: NoSQL and NewSQL
data stores" Springer, 2014.

[5]"Amazon helped start the “NoSQL” movement [Online]. Available:
http://www.wired.com/2012/01/amazon-dynamodb/

[6]NoSQL DEFINITION: Next Generation Databases mostly addressing
some of the points: being non-relational, distributed, open-source and
horizontally scalable[Online]. Available: http://nosql-database.org/

[7]Chaker Nakhli. "Cassandra’s data model cheat sheet: Data model
elements: Column"[Online]. Available:https://en.wikipedia.org/wiki/
Column_(data_store)

[8]O Hajoui, R Dehbi, M Talea - Journal of Theoretical 2015 – “Advanced
comparative study of the most promising NoSQL and NewSQL databases
with a multi-criteria analysis method “

[9]Renzo Angles and Claudio Gutierrez. “Survey of graph database
models”. ACM Computing Surveys (CSUR), 40(1):1, 2008.

[10]Claudio Tesoriero. “Getting Started with OrientDB”. Packt Publishing
Ltd, 2013.

[11]RDBMS dominate the database market, but NoSQL systems are
catching up". [Online]DB-Engines.com, 2013

[12]Bogdan Tudorica, Cristian Bucur, “A comparison between several
NoSQL databases with comments and notes”, RoEduNet International
Conference 10th Edition, IEEE 2011: Networking in Education and
Research, Chengdu, pp. 474-479.

[13]Y Li, S Manoharan “A performance comparison
of SQL and NoSQL database” IEEE, 2013

[14]Jing Han, E Haihong, Guan Le, and Jian Du. Survey on NoSQL
database in Pervasive computing and applications (ICPCA), 2011 6th
international conference on, pages 363–366. IEEE, 2011.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

345

http://db-engines.com/en/ranking_categories
http://www.leavcom.com/pdf/NoSQL.pdf
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf
http://www.wired.com/2012/01/amazon-dynamodb/
http://nosql-database.org/
http://www.javageneration.com/?p=70
http://www.javageneration.com/?p=70
http://www.javageneration.com/?p=70
http://db-engines.com/en/blog_post/23
http://db-engines.com/en/blog_post/23
http://db-engines.com/en/blog_post/23
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625441
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625441
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625441

