IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016
ISSN (Online) 2348 — 7968 | Impact Factor (2015) - 4.332
Www.ijiset.com

Similarity Solution for MHD Flow of Non-Newtonian Fluids

A.G.Pati', M. G. Timol? and J. N. Salunke®

!Department of Mathematics, Kisan Arts, Commerce & Science College, Parola, Dist. Jalgaon.(M.S)
2Department of mathematics, Veer Narmad South Gujarat University, Surat-7, Gujarat.
®Department of mathematics, Swami Ramanand Tirth Marathawada University, Nanded (M. S.)

Abstract
Similarity analysis is made of Magnetohydrodynamics (MHD) boundary layer flow of non-Newtonian fluid past infinite
surface. The deductive group theoretic method is use to derive the similarity solution. The resulting similarity equation is
solved using MATALAB ODE solver. It is observed that magnetic field strength having impact on fluid flow under
consideration. Further, the well- known solutions of Newtonian and non-Newtonian Power —law fluids are found to be
limiting cases of the present solutions.
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1 Introduction

Fluids are encounter at every stage of life. Fluids are of three types:-Liquid, Semi liquid and Gaseous. The fluid
that obeys the Newtonian law of viscosity is called Newtonian fluids and in such case the shear stress is found to
be a linear function of rate of strain. The situation is bit different when a fluid fails to obey the Newton’s law of
viscosity. Such fluids are Known as non-Newtonian fluids and in these type of fluids strain —stress relationship is
non linear.

Usually flow of Newtonian fluids is governed by Navier —stokes equation where as flow of non-Newtonian
fluids is governed by modified Navier-stokes equation, Biological fluids, Liquids crystals, Lubricating oils,
Starch solutions, Rubber solutions, Super glue, Toothpaste etc. are the examples of non-Newtonian fluids.
However a good number of fluid rehology are already in existence, particularly for most of those fluids used as
lubricants and having non-Newtonian behavior, the flow can be analyzed with the help of a generalized Ostwald-
de-wale power —law fluids known as Sisko fluids. It is worth to note that power -law fluid model characterizes
both pseudoplastic and dilatant fluids —two important classes of non-Newtonian fluids and again can characterize
Newtonian fluid as a special case. It is because of such wide coverage in the analysis of lubricants together with
its mathematical simplicity that the Sisko fluid model [Sisko (1958)] has been preferred for application in the
present problem. Some recent studies dealing with the flows of non-Newtonian fluids are mentioned by Hayat et
al. (2004), Fetecau and Fetecau (2003a, b,) (2005); Asghar et al. (2002); Hayat (2005); Hayat and Kara (2006);
Chen et al.(2003, 2004).

The present work concentrates on the similarity solutions for MHD flow of a non-Newtonian fluid to study the
flow of an electrically conducting Sisko fluid. The similarity analysis of governing equation is discussed using
the deductive group theoretic method which is already been successfully applied to several non-linear problems
[Abd-el-Malek et al (2002); Parmar and Timol (2011)].

2. Governing equation

The fundamental equations governing the motion of steady incompressible boundary layer flow of electrically
conducting fluid through porous medium are given by:

divv =0 @
p%—z —Vp + divt — o6B3V )
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whereV is the velocity field, P is density, p the pressure, T the extra stress tensor, 6 the electrical conductivity,

By the applied magnetic field. In this paper we consider a Sisko fluid whose stress-strain relationship is given

by
n-1

A

t=|a+b

%tr(ﬁf)
3

Where a, b and n are constants defined differently for different fluids and A the rate of deformation tensor
defined by

A =L+L"; WhereL=gradV

(4)
For the problem considered here we define the velocity and the stress fields of the following form
V =[u(y.t),0,0], t=1(y,t) -
Under (5), the continuity equation (1) is satisfied identically and from equations (2), (3), we have
au a a au|™1\ au
pE=_0_z+6_y[(a+b6_y )a—y]—oBgu (6)

It is interesting to observe that for a=0 (b # 0, n# 1), the above equation will be equation of power-law fluids
and for b=0 (a # 0, and n=1) it will be equation of Newtonian fluid

3. Formulation of the problem:

We consider a Cartesian coordinate system with y-axis in the vertical upward direction and x-axis parallel to the
rigid plate at y = 0. The flow of an incompressible and electrically conducting Sisko fluid is bounded by an

infinite rigid plate. The Sisko fluid occupies the porous half-space y> 0. The flow is produced by the motion of

\Y,
the plate with the time dependent velocityUO (t) For zero pressure gradient, the resulting problem from (6),

yields
ou_ @ au|"~ 1Y\ gu 2
E_ﬁ_y (a+b$ )g]—o'Bou (7)

u(0,t)=Ugv (t), t>0
u(oo,t)zO, t>0

u(y,0)=g(y), y>0 8)

in which Uo is the characteristic velocity.
The above equations can be made dimensionless using the  following  variables,

u*=l’ y*=&, t*=%’

Uy v v ©)
b= 2[4, N2 = (10)
Accordingly the above boundary value problem after dropping the asterisks (for simplicity) becomes
2=2f(1+b g—y)g—y] — N2y, (11)
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u(0,x) = V(t), fort >0

u(oo,t) =0, fort >0

u(y, 0) = G(y), fory >0
Where G(y) = g(y)Ug* (12)
Without loss of generality we assume that the velocity gradient is positive then equation (11) can be written as
U = uyy + nb(uy)* uy, — N?u (13)

Where suffices refer to partial derivatives.

4. Methodology and Solution of the problem:

Our method of solution depends on the application of a one-parameter deductive group of transformation to the
partial differential equation (13). Under this transformation the two independent variables will be reduced by one
and the differential equation (13) will transforms into an ordinary differential equation.

4.1The group systematic formulation:
Equation (13) contains two independent variables and one dependent variable and hence further procedure is
initiated with the group G, a class of transformation of one-parameter a of the form:
y=A"@y+5 ()
G:{ t=A%*(a)z + S*(a) (14)
u = A"(a)u+ S"(a)
Where A’s and S’s are real-valued and at least differentiable in the real argument ‘a’.

Equation (13) is said to be invariantly transformed, for some function A(S) whenever:

Uiz — Uyy — nb(Tiy)" gy + N?T = K(&)[uy — uyy — nb(uy)n_luyy + Nu]
Substituting the values from the equation (14) in above equation (13), yields

A" _ AY @AD" n-13 2(~u u n-1 2
7 U Wuw - nbw (Uy)" gy + N?(c"u +h") = K(e)[u — uyy, — nb(uy) uy,+N“u]
(15)
The invariance of equation (15), implies that
n
u
AU A (A )
s'=0 and —= 5= -=K(e)
A y y n+
A A
(16)
Also for the absolute invariance of the auxiliary conditions, implies that hY=0
These yields,
2 -1
A=A A=(AY) K(e)=(AY)

Finally, we get the one-parameter sub group G, which transforms invariantly the differential equation (13) and
the auxiliary conditions (12).

The group G is of the form:

_ 2
G: T=[A(e)] t+8'(2), y=A"(s)y, T=A"(e)u -
17
4.2The complete set of absolute invariants:
Our aim is to make use of group methods to represent the problem in the form of an ordinary differential
equation. Then we have to proceed in our analysis to obtain a complete set of absolute invariants. If

n= n( y’t) is the absolute invariant of the independent variables then,

g(y.tu)=F(n) (18)
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u(y,t
is the absolute invariant for the dependent variable (y )
The application of a basic theorem in group theory, [Moran and Gaggioli (1968)], states that:

A function g (y’t’u) is an absolute invariant of a one-parameter group if it satisfies the following first-order
linear partial differential equation,
3 59
Z(O(.ipi+[3i)—:0, Pi :t,y,U
: oP,
i=1 (19)
Where
oAl oS! .
o =—o and Bj=— =123
oe oe
8:80 8:80 (20)

and * ©0denotes the value of * € * which yields the identity element of the group G.

B,=PB3=0

Since hY=h"=0 implies that and from (20) we get following relation between a's.
o =20, = 203.
The equation (19) reduces to
a9 a9 a9
ot oy ou 1)

n=n(y.t)

The absolute invariant of independent variable owing the equation (19) is if it will satisfies the first

order linear partial differential equation

(2t+[3)a—n+ ya—n+ua—n:0, whereﬁzﬁ (22)
ot oy au oy

Applying the variable separable method one can obtain

1
n(y.t)=y(2t+p) 2 (23)
Further the absolute invariant of dependent variable owing the equation (19) is followed by

1
g(y.tu)=(2t+B) 2u(y.t) 24)
Hence from (18), (23), (24) implies that,

1 _1

u(y,t)=(2t+B)2F(n);  Wheren=y(2t+p) 2 25)

4.3The reduction to an ordinary differential equation:
Using the similarity transformation (25) in equation (13), yields to following non-linear ordinary differential
equation

{1 + nb(F')n_l}F” +nF + (N2—1)F =0 (26)
Subject to the reduced auxiliary conditions (12) to,

F(0)=L; F(o)=0; F(y)=G(y)

Where primes denote the ordinary derivative with respect to n,
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5. Result and Discussion:

The differential equation (26) is highly non-linear differential equation and hence it is bit difficult to find its
analytic solution. The numerical solution of equation (26) is obtained for particular values of the parameters by
using MATLAB ode solver and its graphical representation is given in below diagrams which shows the
behavior of the normalized velocity

F(n)=(2t+B) 2u(y) @
The various normalized velocity profiles for the different parameters with specific values are generated, as show
inFigures 1.1 & 1.2

[ In figure 1.1, controlling the parametds n and b it is observe that as the magnetic field increase, the
normalized velocity approaches to its final value fast. In other words, in presence of magnetic field the velocity
increase depends upon the strength of applied magnetic field.

[ Figure 1.2shows that increase in flow index n, reduces the normalized velocity corresponding to

same applied magnetic field. That is as known Non-Newtonian behavior of fluid increase, the velocity decrease.
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Figure 1.1: Effect of magnetic parameter on Newtonian fluid for n=1 b=0.5
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Figure 1. 2: Effect of magnetic parameter on Non-Newtonian fluid for n=2, b=0.5

6.Conclusion

In the present research paper we have successfully derive the conditions, through the deductive group
invariant technique, under which similarity solution of the flow of MHD Sisko fluids exist. The Matlab ode
solver results are presented in graphical form for both Newtonian and non-Newtonian Sisko MHD fluids.
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