
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

471

Data Integrity and Security of Storage Management in Cloud
Computing

Dr. Shubhangi D.C P

1
P, Sham P

2

 P

1
PH.O.D, Department of Computer Science and Engineering, VTU Regional Centre, Kalaburagi, Karnataka, INDIA.

P

 2
PP.G.Student, Department of Computer Science and Engineering, VTU Regional Centre, Kalaburagi, Karnataka, INDIA.

Abstract

Cloud Computing moves the application
software and databases to the centralized
immensely colossal data centers, where the
management of the data and
accommodations may not be plenarily
trustworthy. In this work, we study the
quandary of ascertaining the integrity of data
storage in Cloud Computing. To reduce the
computational cost at utilizer side during the
integrity verification of their data, the notion
of public verifiability has been proposed.
However, the challenge is that the
computational burden is too immensely
colossal for the users with resource-
constrained contrivances to compute the
public authentication tags of file blocks. To
tackle the challenge, we propose OPoR, an
incipient cloud storage scheme involving a
cloud storage server and a cloud audit
server, where the latter is surmised to be
semi-veracious. In particular, we consider
the task of sanctioning the cloud audit
server, on behalf of the cloud users, to pre-
process the data after uploading to the cloud
storage server and later verifying the data
integrity. It outsources the cumbersomely
hefty computation of the tag generation to
the cloud audit server and eliminates the
involution of utilizer in the auditing and in

the preprocessing phases. Furthermore, we
reinforce the Proof of Retrievabiliy (PoR)
model to fortify dynamic data operations, as
well as ascertain security against reset
attacks launched by the cloud storage server
in the upload phase.

Keywords: cloud computing, computer
centres, data integrity, security of data,
storage management.

1. Introduction

Cloud Computing has been envisioned as the
next generation architecture of the IT enterprise
due to its long list of unprecedented advantages:
on-demand self service, ubiquitous network
access, location-independent resource pooling,
rapid resource elasticity, and usage based
pricing. In particular, the ever more frugal and
more potent processors, together with the
“software as a service” (SaaS) computing
architecture, are transforming data centers into
pools of computing accommodation on an
immensely colossal scale.

Albeit having appealing advantages as a
promising accommodation platform for the
Internet, this incipient data storage paradigm in
“Cloud” brings many challenging issues which
have profound influence on the usability,
reliability, scalability, security, and performance
of the overall system. One of the most

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

472

astronomically immense concerns with remote
data storage is that of data integrity verification
at untrusted servers. For instance, the storage
accommodation provider may decide to
obnubilating such data loss incidents as the
Byzantine failure from the clients to maintain a
reputation. What is more solemn is that for
preserving maxima and storage space the
accommodation provider might deliberately
discard infrequently accessed data files which
belong to a mundane client. Considering the
astronomically immense size of the outsourced
electronic data and the client’s constrained
resource capability, the core of the quandary can
be generalized as how can the client find an
efficient way to perform periodical integrity
verification without the local replica of data
files. In order to surmount this quandary, many
schemes have been proposed under different
system and security models. In all these works,
great efforts have been made to design solutions
that meet requisites: high scheme efficiency,
stateless verification, unbounded utilization of
queries and retrievability of data, etc. According
to the role of the verifier in the model, all the
schemes available fall into two categories:
private verifiability and public verifiability.
Albeit achieving higher efficiency, schemes
with private verifiability impose computational
burden on clients. On the other hand, public
verifiability alleviates clients from performing
an abundance of computation for ascertaining
the integrity of data storage. To be categorical,
clients are able to delegate a third party to
perform the verification without devotion of
their computation resources. In the cloud, the
clients may crash unexpectedly or cannot afford
the overload of frequent integrity checks. Thus,
it seems more rational and practical to equip the
verification protocol with public verifiability,

which is expected to play a more paramount role
in achieving better efficiency for Cloud
Computing.

2. Related Work

Recently, much research effort has been devoted
largely to ensure the security of cloud
computing. In particular, we consider the task of
sanctioning the cloud audit server, on behalf of
the cloud users, to pre-process the data afore
uploading to the cloud storage server and later
verifying the data integrity. OPoR outsources
the heftily ponderous computation of the tag
generation to the cloud audit server and
eliminates the involution of utilizer in the
auditing and in the preprocessing phases.
Furthermore, we reinforce the Proof of
Retrievably (PoR) model to fortify dynamic data
operations, as well as ascertain security against
reset attacks launched by the cloud storage
server in the upload phase.

 PDP model[1] was introduced which allows
the client to verify the data stored at a untrusted
servers without reacquiring it. This model
acquires probabilistic proofs of possession by
examining random sets of blocks from the
server, which vitally reduce the input/output
costs. The client keeps up a stabile amount of
metadata to verify the proof. The
challenge/response compact transmits a small,
constant amount of data, which decreases
network communication. Thus, the PDP design
for remote data checking backs abundant data
sets in widespread storage systems. The two
provably-secure PDP schemes that are more
effective than former solutions, even when
related with schemes that attain weaker
guarantees. In distinct, the burden at the server
is less (or even constant), as opposed to linear in

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

473

the size of the data. Experiments
implementation of PDP reveal that the
performance of PDP is confined by disk
input/output, not by cryptographic computation.

POR[2] is a concise proof by a prover(server) or
file system to a client (verifier) that a file F
stored at server is intact, in the belief that the
client can fully recapture it. As PORs induce
lower communication multiplicity than
transferring a file F, present at the attractive
building block for high-security of remote
storage systems. Here we come up with a
theoretical structure for the design of PORs.
THE present design upgrades the previously
recommended POR architecture of Juels-Kaliski
and Shacham-Waters, and also yields content on
the limitations of previous theoretical models
for PORs. It supports thourghly Byzantine
adversative model, convening only the limits
which are fundamentals of POR’s, that the
attacker’s error rate be restricted when the client
seeks to extract F.The tactics to support efficient
protocols across the achievable range of , up to
range close to 1. Here we introduce a new
alternative on the Juels-Kaliski protocol and
determine a prototype implementation and
demonstrate a practical encoding for files F
whose size exceeds that of client main memory.
full security for POR against the attackers[3]
was introduced by shortest query and response
time of POR using public verifiability and
shortest response with private
verifiability.Using MAC security level is
enhanced .It is sufficient for the client to
retrieve retrieves a few blocks together with
their MACs and check, using his secret key, that
these blocks are correct. K. D. Bowers[4],in this
POR model a prover can verify that the file is
intact and the client can recover the whole data

.The client can retrieve all of F from the server
with high probability and a technique called
“spot-checking” to check error rate of a large
files was introduced.M. Naor[5],here the
problem of storing a file at the remote server, to
know that file has been corrupted a end user
stores a constant amount of metadata. The user
must store this data in such way that it should
allow him to verify the data without reading a
entire file the same (tight) lower bound applies
also to that problem.E.C. Chang[6],a client or a
verifier having a small amount of storage space
check s periodically that the remote server
keeping a file safely,but an untrusted server may
discard the request.So remote integrity
check(RIC) with a combination of RSA
model.In this POR scheme there is a time
extractor can obtain the data by multiple
verifications using error corrected code.MA
Shah,the present generation customers uses the
online services of google,amazon etc for the
storage of their valuable data.The customer
must entirely trust the service provider that it
maintains the integrity of data.A service
provider may hide the data loss incidents so in
order to overcome this a protocol called TPA
was introduced to verify the data at remote
storage and the original data is never made
available to TPA.So the TPA avoid the burden
of frequent integrity checks at the user side. Y.
Zhu[8].introduced dynamic audit server with
integrity verification at the untrusted server. The
audit server supports dynamic data operations
such as insert, delete and update and also with
the help of indexed hash table file corruption is
detected this leads to the lower computational
cost and requires an additional storage for
integrity verification.B wang[9],addressed the
problem of integrity of a shared data because
with the help of cloud service it is common that

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

474

the data is shared among multiple users,the
public auditing of this data is a major concern to
maintain a identity privacy. Ring signature was
introduced to compute the information which
must be verified needed for the integrity of data
and the identity of each block is kept private
from TPA.[10], with the help of TPA the burden
caused on client to verify the data was reduced
and also the auditing task of client was
eliminated. The previous architectures of POR
does not support integrity check and dynamic
update concurrently but the present model
solves this problem with the help of MHT for
tag block authorization

System Architecture:

Fig 1: System Architecture

Client: An entity that has large data files to be

stored in the cloud and relies on the cloud for

data maintenance and computation can be either

individual consumers or organizations.

Cloud Storage Server (CSS): An entity, which

is managed by Cloud Service Provider (CSP),

has significant storage space and computation

resource to maintain client’s data. The CSS is

required to provide integrity proof to the clients

or cloud audit server during the integrity

checking phase.

Cloud Audit Server (CAS):A TPA, which has

expertise and capabilities that clients do not

have, is trusted to assess and expose risk of

cloud storage services on behalf of the clients

upon request. In this system, the cloud audit

server also generates all the tags of the files for

the users before uploading to the cloud storage

server.

3. Methodology

In our system both public verifiability and fully
dynamic data operation are supported.

//////////The predefined parameters in
construction are P-public key,S-secret key,J-
input parameter ,TF-tags of file,K-prover

 (P, S) ← Setup(1,J). It takes as input security
parameter 1,k,returns public parameters and the
key pair of the cloud audit server.
 (F ∗, TF) ← Upload(S, F). There are two
phases in this algorithm. In the first phase, the
client uploads TF data file F to the cloud audit
server, where F is an ordered collection of
blocks {Mi}. In the second phase, the file F is
re-uploaded to the cloud storage server by the
cloud audit server: it takes as input the private
key sk and F, and outputs the signature set Φ,
which is an ordered collection of signatures {σi}
on {Mi}. We denote the stored file F ∗ = {F,
Φ}. It also outputs metadata-the root R of a
Merkle hash tree from {Mi} and the signature t
= sigsk(h(R)) as the tag of F ∗ . Notice that the

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

475

storage server stores (F∗, TF), but the audit
server (the client) only keeps t as receipt.
 1/0 ← Integrity Verification{K(P, F∗ , TF) V
(P, TF)}.This is an interactive protocol for
integrity verification of a file F ∗ with tag TF.
The cloud storage server plays the role of prover
K with input the public key P, a stored file F and
a file tag TF. The cloud audit server plays the
role of verifier V with input P and TF. At the
end of the protocol, V outputs TRUE (1) if F ∗
passes the integrity verification, or F ALSE (0)
otherwise.

 (F∗, TF) ← Update {K(P, Fˆ∗ ,TFˆ) K (S,TF,
update ˆ)}. This is an interactive protocol for
dynamic update of a file Fˆ∗ with tag TFˆ. The
cloud storage server plays the role of prover K
with input the public key P, a stored file Fˆ∗ ,
and a file tag TF. The cloud audit server plays
the role of verifier V with input the private key
S, TF, and an data operation request “update”
from the client. At the end of the protocol, V
outputs a file tag TF of the updated file F ∗ if K
gives a valid proof for the update, or F ALSE
(0) otherwise.

• Correctness. A PoR scheme is correct if
the following two conditions hold:
 If (F∗,TF) ← Upload(S,F) then
IntegrityVerify{K(P, F∗ , TF) V (P,
TF)} = 1.

Since the cloud audit server is fully trusted in
the two-server architecture, we allow it to
generate the key pairs on behalf of the clients in
the setup phase. However, it might be
undesirable to place full trust on the cloud audit
server in some outsourcing tasks. Consider the
following scenario: one storage service is
available to the clients on a pay-per-use basis,

and the audit server may upload a file,
intentionally or mistakenly, on behalf of one
client who did not ask for storing that file. One
solution for such applications is utilizing a
proxy signature scheme supporting delegation
by warrant to delegate the signing right of the
clients to the cloud audit server for each usage.
The warrant to the audit server can be the
hashed value of the uploaded file as a credential
of the delegation

.4. Result and Discussion

Fig 2: File With Secrete Key.

Fig 3: File with Encrypted Format before
Uploading.

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

476

Fig 4: TPA Data Verifying Page

In the first experiment, the computational
overhead for the tag generation of files at the
cloud audit server is evaluated. We have not
checked the computational overhead at users
because it only needs the computation of a
digital signature, which is very small compared
with the computation of the tags. The reason is
that the most overhead computation has been
delivered to the cloud audit server. Three
different numbers of s are chosen in the
experiment to show the effect on the efficiency
of the time cost.From Fig. 5, the time cost grows
when the number of s decreases. The average
time cost for file with size 50KB is 5s.
Compared with the previous related work the
computational overhead at users is outsourced to
the cloud audit server.

Fig 5: Graphical representation of Tag
generation time.

5. Conclusion

This paper proposes ,a new proof of
retrievability for cloud storage, in which a
trustworthy audit server is introduced to
preprocess and upload the data on behalf of the
clients. In OPoR, the computation overhead for
tag generation on the client side is reduced
significantly. The cloud audit server also
performs the data integrity verification or
updating the outsourced data upon the clients’
request. Besides, we construct another new PoR
scheme proven secure under a PoR model with
enhanced security against reset attack in the
upload phase. The scheme also supports public
verifiability and dynamic data operation
simultaneously.

6. References

[1] G. Ateniese, R. Burns, R. Curtmola, J.
Herring, L. Kissner, Z. Peterson, and D. Song,
“Provable data possession at untrusted stores,”
in CCS ’07: Proceedings of the 14th ACM
conference on
Computer and communications security. New
York, NY, USA: ACM, 2007, pp. 598–609.
[2] A. Juels and B. S. K. Jr., “Pors: proofs of
retrievability for large files,” in CCS ’07:
Proceedings of the 14th ACM conference on
Computer and communications security. New
York, NY, USA:
ACM, 2007, pp. 584–597.
[3] H. Shacham and B. Waters, “Compact
proofs of retrievability,” in ASIACRYPT ’08:
Proceedings of the 14th International
Conference on the Theory and Application of
Cryptology and
Information Security. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 90–107.

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 6, June 2016

 ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

477

[4] K. D. Bowers, A. Juels, and A. Oprea,
“Proofs of retrievability: theory and
implementation,” in Proceedings of CCSW
2009. ACM, 2009, pp. 43–54.
[5] M. Naor and G. N. Rothblum, “The
complexity of online memory checking,” J.
ACM, vol. 56, no. 1, pp. 2:1–2:46, Feb. 2009.
[Online]. Available:
http://doi.acm.org/10.1145/1462153.
1462155
[6] E.-C. Chang and J. Xu, “Remote integrity
check with dishonest storage server,” in
Proceedings of ESORICS 2008, volume 5283 of
LNCS. Springer-Verlag, 2008, pp. 223–237.
[7] M. A. Shah, R. Swaminathan, and M. Baker,
“Privacy-preserving audit and extraction of
digital contents,” Cryptology ePrint Archive,
Report 2008/186, 2008, http://eprint.iacr.org/.
[8] A. Oprea, M. K. Reiter, and K. Yang,
“Space-efficient block storage integrity,” in In
Proc. of NDSS 2005, 2005.
[9] T. S. J. Schwarz and E. L. Miller, “Store,
forget, and check: Using algebraic signatures to
check remotely administered storage,” in
ICDCS ’06: Proceedings of the 26th IEEE
International
Conference on Distributed Computing Systems.
Washington, DC, USA: IEEE Computer
Society, 2006.
[10] Q. Wang, K. Ren, S. Yu, and W. Lou,
“Dependable and secure sensor data storage
with dynamic integrity assurance,” ACM
Transactions on Sensor Networks, vol. 8, no. 1,
pp. 9:1–9:24, Aug. 2011. [Online]. Available:
http: //doi.acm.org/10.1145/1993042.1993051
[11] L. V. M. Giuseppe Ateniese, Roberto Di
Pietro and G. Tsudik, “Scalable and efficient
provable data possession,” in International
Conference on Security and Privacy in
Communication Networks

(SecureComm 2008), 2008.
[12] C. Wang, Q. Wang, K. Ren, and W. Lou,
“Privacy-preserving public auditing for data
storage security in cloud computing,” in
INFOCOM, 2010, pp. 525–533.

http://www.ijiset.com/

