

ISSN (Online) 2348 - 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

# k-Neighborhood-prime Labeling of Graphs

P. Lawrence Rozario Raj<sup>1</sup> and Sr. Jincy Joseph<sup>2</sup>

<sup>1</sup> P.G. and Research Department of Mathematics, St. Joseph's College, Tiruchirappalli – 620 002, Tamil Nadu, India.

M.Phil Scholar, P.G. and Research Department of Mathematics, St. Joseph's College, Tiruchirappalli – 620 002, Tamil Nadu, India.

#### Abstract

In this paper, we investigate the k-neighborhood-prime labeling of the switching of a vertex in cycle  $C_n$ , switching of a pendent vertex in path  $P_n$ ,  $W_n \cup T_m$ ,  $B_{n,n}$ ,  $K_{1,n,n}$ ,  $D_2(K_{1,n})$  and  $S'(K_{1,n})$ .

**Keywords:** Neighborhood-Prime Labeling, Neighborhood-Prime graph, k-Neighborhood-Prime Labeling, k-Neighborhood-Prime graph.

## **1. Introduction**

By a graph, we mean a finite, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [4]. For standard terminology and notations related to number theory we refer to Burton [2] and graph labeling, we refer to Gallian [3]. The notion of prime labeling for graphs originated with Roger Entringer and was introduced in a paper by Tout et al. [8] in the early 1980s and since then it is an active field of research for many scholars. Patel et al.[6] introduce the notion of neighborhood-prime labeling of graph and they present the neighborhood-prime labeling of various graphs in [6,7]. Ananthavalli et al. present the neighborhood-prime labeling of some special graphs in [1]. In [9], Vaidya et al. introduce the concept of k-prime labeling of graphs. Lawrence et al. introduce the notation of k-neighborhoodprime labeling and they present the neighborhood-prime labeling of  $G *_B B$ , where B is the book with triangular and rectangle pages,  $G *_{B_{n,m}} B_{n,m}$ , and k- neighborhood - prime

labeling of Paths and some special graphs in [5]

## **Definition 1.1**

Let G = (V,E) be a graph with n vertices. A function  $f: V(G) \rightarrow \{1,2,3,...,n\}$  is said to be a prime labeling, if it is bijective and for every pair of adjacent vertices u and v, gcd(f(u),f(v)) = 1. A graph which admits prime labeling is called a prime graph.

## **Definition 1.2**

Let G = (V,E) be a graph with n vertices. A bijective function f : V(G)  $\rightarrow$  {1,2,3,...,n} is said to be a neighborhood-prime labeling, if for every vertex v  $\in$  V(G) with deg(v) > 1, gcd  ${f(u): u \in N(v)} = 1$ . A graph which admits neighborhoodprime labeling is called a neighborhood-prime graph.

## **Definition 1.3**

A k-prime labeling of a graph G is an injective function  $f: V \rightarrow \{k, k+1, ..., k+|V|-1\}$  for some positive integer k that induces a function  $f^{+}: E(G) \rightarrow N$  of the edges of G defined by  $f^{+}(uv) = gcd(f(u), f(v)), \forall e = uv \in E(G)$  such that  $gcd(f(u), f(v)) = 1, \forall e = uv \in E(G)$ . The graph which admits a k-prime labeling is called a k-prime graph.

## **Definition 1.4**

Let G = (V(G),E(G)) be a graph with n vertices. A bijective function  $f: V(G) \rightarrow \{k, k+1, ..., k+n-1\}$  is said to be a k-neighborhood-prime labeling, if for every vertex  $v \in V(G)$  with deg(v) > 1, gcd {f(u) :  $u \in N(v)$ } = 1. A graph which admits k-neighborhood-prime labeling is called a k-neighborhood-prime graph.

## **Definition 1.5**

A complete biparitite graph  $K_{1,n}$  is called a star and it has n+1 vertices and n edges.  $K_{1,n,n}$  is the graph obtained by the subdivision of the edges of the star  $K_{1,n}$ .

## **Definition 1.6**

For a graph G the splitting graph S'(G) of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

## **Definition 1.7**

Bistar  $B_{n,n}$  is the graph obtained by joining the center (apex) vertices of two copies of  $K_{1,n}$  by an edge.

## **Definition 1.8**

A vertex switching  $G_v$  of a graph G is obtained by taking a vertex v of G, removing the entire edges incident with v and adding edges joining v to every vertex which are not adjacent to v in G.

## **Definition 1.9**

The shadow graph  $D_2(G)$  of a connected graph G is constructed by taking two copies of G say G' and G". Join each vertex u' in G' to the neighbours of the corresponding vertex v' in G".



ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

# 2. Main Results

## Theorem 2.1

Switching of a vertex in cycle  $C_n$  is k-neighborhood-prime graph.

# Proof.

Let  $v_1, v_2, ..., v_n$  be the successive vertices of  $C_n$ .

 $G_v$  denotes graph is obtained by switching of vertex v of  $G = C_n$ .

Without loss of generality let the switched vertex be  $v_1$ .

Then  $|V(G_{v_1})| = n$  and  $|E(G_{v_1})| = 2n - 5$ .

Let p be the largest prime such that  $k \le p \le k+n-1$ . Define f : V(G<sub>v1</sub>)  $\rightarrow$  {k,k+1,...,k+n-1} as follows:

 $f(v_1) = p$ ,

Label the remaining vertices  $v_2, v_3, ..., v_n$  by the remaining numbers from k to k+n-1 other than p.

Claim that f is a neighborhood-prime by considering the following two cases.

Sub case (i):  $x = v_1$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) has at least two consecutive integers.

**Sub case (ii):**  $x = v_i$  for  $2 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since one of the label of vertices in N(x) is p.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the graph obtained by switching of a vertex in cycle  $C_n$  is k-neighborhood-prime graph.

## Example 2.1

The 3-neighborhood-prime labeling of switching of a vertex in cycle  $C_8$  is shown in figure 2.1.



Figure 2.1

## Theorem 2.2

Switching of a pendent vertex in path  $P_n$  is k-neighborhood-prime graph.

# Proof.

Let  $v_1, v_2, ..., v_n$  be the vertices of path  $P_n$ .

The graph G is obtained by switching of a pendent vertex in path  $P_n$ .  $v_1$  and  $v_n$  are pendent vertex of path  $P_n$ .

Without loss of generality, let the switched vertex be  $v_1$ .

Then |V(G)| = n and |E(G)| = 2n - 4.

Let p be the largest prime such that  $k \le p \le k+n-1$ .

Define  $f: V(G_{v_1}) \rightarrow \{k, k+1, \dots, k+n-1\}$  as follows:

 $\mathbf{f}(\mathbf{v}_1) = \mathbf{p},$ 

Label the remaining vertices  $v_2, v_3, ..., v_n$  by the remaining numbers from k to k+n-1 other than p.

Claim that f is a neighborhood-prime by considering the following two cases.

Sub case (i):  $x = v_1$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) has at least two consecutive integers.

**Sub case (ii):**  $x = v_i$  for  $3 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since one of the label of vertices in N(x) is p.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the graph obtained by switching of a vertex in path  $P_n$  is k-neighborhood-prime graph.

## Example 2.2

The 5-neighborhood-prime labeling of switching of a pendent vertex in path  $P_6$  is shown in figure 2.2.



## Theorem 2.3

The disconnected graph  $W_n \cup T_m$  is k-neighborhood-prime graph, where  $n \ge 3$  and  $m \ge 2$ .

Proof.

Let G be a disconnected graph  $W_n \cup T_m$ .

In  $W_n$ , let v be the central vertex and  $v_1$ ,  $v_2$ , ...,  $v_n$  be the vertices of  $C_n$ .

Let  $w_1$ ,  $w_2$ ,...,  $w_{m-1}$ ,  $w_m$ ,  $w_{m+1}$ , ...,  $w_{2m-1}$  be the 2m-1 vertices of  $T_m$ .

Then |V(G)| = n+2m and |E(G)| = 2n+3m-3.

Define  $f: V(P_n) \rightarrow \{k, k+1, \dots, k+n+2m-1\}$  as follows: **Case 1:** k is odd.

Let p be the largest prime such that  $k+2m-1 \le p \le k+n+2m-1$ .

 $\begin{array}{l} f(v) = p \\ f(w_i) = k + 1 + 2(j - 1), & 1 \leq j \leq m - 1 \end{array}$ 



#### ISSN (Online) 2348 - 7968 | Impact Factor (2015) - 4.332

#### www.ijiset.com

$$f(w_j) = k + 2(j-1), \qquad 1 \le j \le m$$

Label the remaining vertices v1, v2, ..., vn by the remaining numbers from k+2m-1 to k+n+2m-1 other than p. Case 2: k is even.

Let p be the largest prime such that  $k+2m \le p \le$ k+n+2m-1.

$$\begin{array}{ll} f(v) = p \\ f(v_1) = k \\ f(w_j) = k{+}2{+}2(j{-}1), & 1 \leq j \leq m \\ f(w_j) = k{+}1{+}2(j{-}1), & 1 \leq j \leq m \end{array}$$

Label the remaining vertices  $v_1, v_2, ..., v_n$  by the remaining numbers from k+2m-1 to k+n+2m-1 other than p.

 $\leq m-1$ 

Claim that f is a neighborhood-prime labeling for both cases by considering the following three sub cases. Sub case (i): x = v.

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) has at least two consecutive integers.

**Sub case (ii):**  $x = v_i$  for  $1 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since one of the label of vertices in N(x) is p.

Sub case (iii):  $x = w_i$  for  $1 \le j \le m-1$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) are odd consecutive integers.

Sub case (iv):  $x = w_i$  for  $m \le j \le 2m-1$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) has at least two consecutive integers.

Therefore, f is a k-neighborhood-prime labeling for both cases.

Thus  $W_n \cup T_m$  is k-neighborhood-prime graph, where n  $\geq$  3 and m  $\geq$  2.

## Example 2.3

The 4-neighborhood-prime labelings of paths  $W_4 \cup T_4$ is shown in Figure 2.3.



Figure 2.3

## Theorem 2.4

The  $B_{n,n}$  is k-neighborhood-prime graph, where  $n \ge 2$ . Proof.

n}, where  $u_i$ ,  $v_i$  are pendant vertices.

Let G be the graph  $B_{n,n}$ .

The vertex set  $V(G) = \{u, w, u_i, v_i : 1 \le i \le n\}$  and the edge set  $E(G) = \{uw, uu_i, vv_i, :1 \le i \le n\}.$ 

Then |V(G)| = 2n+2 and |E(G)| = 2n+1.

Define  $f: V(G) \rightarrow \{k, k+1, \dots, k+2n+1\}$  as follows.

 $f(u_i) = k + i - 1$ for  $1 \le i \le n$ 

f(u) = k + n + 1,

f(v) = k+n,

$$f(v_i) = k+n+1+i, \text{ for } 1 \le i \le n$$

Claim that f is a neighborhood-prime labeling by considering the following two cases.

Sub case (i): x = u, v.

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) has consecutive integers. **Sub case (ii):**  $x = u_i$ ,  $v_i$  for  $1 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) are consecutive integers.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the  $B_{n,n}$  is k-neighborhood-prime graph, where  $n\geq 2$  .

## Example 2.4

The 5-neighborhood-prime labeling of  $B_{4,4}$  is shown in figure 2.4.



#### Theorem 2.5

The graph  $K_{1,n,n}$  is k-neighborhood-prime graph.

Proof

Let G be a  $K_{1,n,n}$ . Let  $V(G) = \{v, v_i, u_i : 1 \le i \le n\}$  and  $E(G) = \{vv_i, v_iu_i : 1 \le i \le n\}.$ 

Then |V(G)| = 2n+1 and |E(G)| = 2n.

Let p be the largest prime such that  $k+n \le p \le k+2n$ .

Define  $f: V(G) \rightarrow \{k, k+1, \dots, k+2n\}$  as follows:

$$f(\mathbf{v}) = \mathbf{p},$$

 $f(v_i) = k + i - 1$ , for  $1 \le i \le n$ 

Label the remaining vertices  $u_1, u_2, ..., u_n$  by the remaining numbers from k+n to k+2n other than p.

Claim that f is a neighborhood-prime by considering the following two cases.

## Sub case (i): x = v.

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) are consecutive integers.

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 8, August 2016

ISSN (Online) 2348 - 7968 | Impact Factor (2015) - 4.332

#### www.ijiset.com

**Sub case (ii):**  $x = v_i$  for  $1 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since one of the label of vertices in N(x) is p.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the graph  $K_{1,n,n}$  is k-neighborhood-prime graph.

## Example 2.5

The 8-neighborhood-prime labeling of  $K_{1,6,6}$  is shown in figure 2.5.





#### Theorem: 2.6

 $D_2(K_{1,n})$  is k-neighborhood-prime graph, where  $n \ge 2$ . **Proof.** 

Consider two copies of  $K_{1,n}$ .

Let v,  $v_1, v_2, ..., v_n$  be the vertices of the first copy of  $K_{1,n}$  and  $v', v'_1, v'_2, ..., v'_n$  be the vertices of the second copy

of  $K_{1,n}$  where v and v' are the respective apex vertices. Let G be  $D_2(K_{1,n})$ .

Then |V(G)| = 2n+2 and |E(G)| = 2n+1. Define  $f: V(G) \rightarrow \{k, k+1, \dots, k+2n+1\}$  as follows. f(v) = k, f(v') = k+1,  $f(v_i) = k+1+i$  for  $1 \le i \le n$  $f(v'_i) = k+n+1+i$ , for  $1 \le i \le n$ 

Claim that f is a neighborhood-prime labeling by considering the following two cases.

Sub case (i): x = v, v'.

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) have consecutive integers.

**Sub case (ii):**  $x = v_i$ ,  $v'_i$  for  $1 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) are consecutive integers.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the  $D_2(K_{1,n})$  is k-neighborhood-prime graph, where  $n \geq 2$  .

#### Example 2.6

The 9-neighborhood-prime labeling of  $D_2(K_{1,4})$  is given in Figure 2.6.



#### Theorem: 2.7

The graph  $S'(K_{1,n})$  is k-neighborhood-prime graph, where  $n \ge 2$ .

# Proof.

Let  $v_1, v_2, v_3, ..., v_n$  be the pendant vertices and v be the apex vertex of  $K_{1,n}$  and u,  $u_1, u_2, u_3, ..., u_n$  are added vertices corresponding to v,  $v_1, v_2, v_3, ..., v_n$  to obtain  $S'(K_{1,n})$ .

Let G be the graph  $S'(K_{1,n})$ Then |V(G)| = 2n+2 and |E(G)| = 3n. Define  $f: V(G) \rightarrow \{k, k+1, \dots, k+2n+1\}$  as follows. f(v) = k,  $f(v_i) = k+1+i$  for  $1 \le i \le n$   $f(u_i) = k+n+1+i$ , for  $1 \le i \le n$ im that f is a point herefore a point herefore.

Claim that f is a neighborhood-prime labeling by considering the following two cases.

## Sub case (i): x = v, u.

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) have consecutive integers.

**Sub case (ii):**  $x = u_i$  for  $1 \le i \le n$ .

Then the gcd of the labels of vertices in N(x) is 1. Since the label of vertices in N(x) are consecutive integers.

Thus f admits k-neighborhood-prime labeling of G.

Hence, the  $D_2(K_{1,n})$  is k-neighborhood-prime graph, where  $n \ge 2$ .



ISSN (Online) 2348 – 7968 | Impact Factor (2015) - 4.332

www.ijiset.com

## Example 2.7

The 7-neighborhood-prime labeling of  $D_2(K_{1,4})$  is given in Figure 2.7.



Figure 2.7

# 4. Conclusions

In this paper, In this paper, we present investigate the k-neighborhood-prime labeling of the switching of a vertex in cycle  $C_n$ , switching of a pendent vertex in path  $P_n$ ,  $W_n \cup T_m$ ,  $B_{n,n}$ ,  $K_{1,n,n}$ ,  $D_2(K_{1,n})$  and  $S'(K_{1,n})$ .

## References

- C. Ananthavalli and K. Nagarajan, Neighborhood-prime Labeling for Some Special Graphs, International Journal of Mathematical Archive, 7(4), 2016, pp.224-230.
- [2]. David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
- [3]. J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16, # DS6, 2014.
- [4]. F. Harary, Graph theory, Addison Wesley, Reading, Massachusetts, 1972.
- [5]. P. Lawrence Rozario Raj, D. Philomine Jeevitha and R. Lawrence Joseph Manoharan, Some Results on Neighborhood-prime Labeling and k-Neighborhood-prime Labeling of Graphs, accepted in Hindustan Journal of Science and Humanities.
- [6]. S.K. Patel and N.P. Shrimali, Neighborhood-prime Labeling, International Journal of Mathematics and Soft Computing, Vol.5, No.2, 2015, pp. 135-143.
- [7]. S.K. Patel and N.P. Shrimali, Neighborhood-prime Labeling of some union graphs, International Journal of Mathematics and Soft Computing, Vol.6, No.1, 2016, pp. 39 - 47.
- [8]. A. Tout, A.N. Dabboucy and K. Howalla, Prime Labeling of Graphs, Nat. Acad. Sci. Letters, 11, 1982, pp. 365-368.
- [9]. S. K. Vaidya and U. M. Prajapati, Some Results on Prime and k-Prime Labeling, Journal of Mathematics Research, Vol.3, No.1, 2011, pp.66-75.