
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 5, July 2014.

www.ijiset.com
ISSN 2348 – 7968

Static Timing Analysis (STA) of SAS Expander on Virtex7
FPGA by using Vivado

G. B. Munde P

1
P, P. P. Bartakke P

2
P

P

1
PElectronics & Telecommunication Department, College of Engineering, Pune, India

P

2
PProfessor, Electronics & Telecommunication Department, College of Engineering, Pune, India

Abstract

This paper describes roadblock on STA of SAS
Expander design by using Vivado tool, while
building Emulation system for the same design on
Virtex7 FPGA device. To start with timing analysis
it’s necessary to apply constraints. Paper describes
different constraint formats supported by Vivado,
general idea about XDC format, and application of
constraint. Vivado generate timing reports for timing
analysis, in addition to these we can generate custom
reports by writing TCL scripts. Applying different
implementation performance strategies and selecting
best strategy for further iterations. We can use
different synthesis options like (compile for area,
timing or balanced) for trade-off between area and
timing optimization of design while synthesizing
design.

 Keywords

STA, SAS (Serial Attached SCSI), XDC, TCL.

1 Introduction
To get desired performance of a design, we need to
meet timing in a design. So, timing analysis is
essential. We can do timing analysis in different
methods like Dynamic Timing Analysis (DTA),
Static timing Analysis (STA). DTA verifies
functionality of the design by applying input vectors
and checking for correct output vectors. Static timing
analysis is a method of validating the timing
performance of a design by checking all possible
paths for timing violations under worst-case
conditions [i]. STA approach typically takes a
fraction of the time it takes to run logic simulation
(i.e. DTA) on a large design and guarantees 100%
coverage of all true timing paths in the design
without having to generate test vectors. We can say
that, we have achieved timing closure. When design

has neither setup violation nor hold violation and also
we applied all constraints.

 We did STA of SAS Expander, while building
emulation system targeting Virtex7 FPGA device for
SAS Expander Design in-circuit emulation [ii].
FPGA Emulation of SAS Expander helps concurrent
firmware and hardware development of SAS
expander. This will ultimately result in reduced time
to market. SAS Expander is switch used to connect
SAS devices like initiators (i.e. controllers or Host
Bus Adapters), Targets (i.e. Hard Disk Drives
(HDDs) or solid state drives (SSDs)), and SAS
Expanders [iv]. SAS Expanders enhances your
external storage environment with high scalability
and performance, by supporting SAS data transfer
rates of 12, 6, 3 Gb/s, and SATA data transfer rates
of 6 and 3Gb/s [v]. Virtex7 is 7-series FPGA family
with high performance and high capacity, it’s from
Xilinx.

We can do timing check at different stages in FPGA
Emulation flow for timing estimations, in our case we
did timing check post synthesis and post route. Post
route is more accurate timing estimations rather than
post logic synthesis, since they include routing
delays.

2 Timing Analysis

2.1 Timing constraints
To start timing analysis, we need to apply appropriate
timing constraint. There are different formats of
constraints like User-defined Constraint files (UCF),
Synopsis Design Constraints (SDC), Xilinx design
constraints (XDC), and Tool Command Language
(TCL). In our case we used XDC formats applying
constraint in Vivado [vi]. Applying appropriate
constraint in standard order is essential to met timing
closure.

334

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 5, July 2014.

www.ijiset.com
ISSN 2348 – 7968

We had defined major clocks earlier using create
clock but few clock definitions were missing which
were reported in timing summary report under
heading “No Clock”. So, we have to add clock
definition of those missing clocks with corresponding
frequency in constraints.

From designers we come to know, we can define
false Paths from SClk to SERDES clocks and vice
versa. We have written false path constraints on these
paths in file false_path.xdc. From this onwards, it
was iterative to check timing reports, apply
constraint, check timing reports with added
constraints, and again apply constraints for next
critical paths.

There were large number of timing violations in part
of design logic and that was redundant logic for
3Gb/s data rate (necessary for 12Gb/s). We removed
this related logic to ground, and re-synthesized and
implemented design which gave improved timing
results.

Next critical paths are from SCLK to PCLKS (SCLK
is 4 times faster than PCLKS). We used custom script
with additional filters with get_timing_paths, to
generate group of timing paths with violation on the
basis of Slack, start-point, endpoint. Most of these
paths were from or to configuration registers on
which we can apply multi-cycle paths.

2.2 Timing Reports
After applying constraint, we can check timing from
timing reports. We can generate different timing
reports for timing checks. By using these we come to
know timing violation paths, missing clocks, and
details of complete timing on specific paths. There
are two ways to generate timing reports in Vivado
with following TCL commands:

1. Report_timing_summary: It will report
summary of timing related to every
clock in the design. We can write this
into a file and analyses it or else we can
check this report directly in GUI. For
more information about this command
you can report_timing_summary -h

2. Report_timing: Reports timing
summary for a specific timing path that

may be from clock to clock or Start-
point to endpoint.

2.3 Custom Timing Report using TCL
In addition to tool generated timing reports, we can
generate custom reports by writing TCL scripts to get
required details about timing. We have written a
script to report timing violation paths in custom
format. In which you can mention the start point, end
point, launch clock, capture clock, and slack of a path
in tabular form in a file for all timing paths in design.
By referring Vivado user guides and TCL script
manual, we had written script to get timing paths in
custom format (by referring Vivado user guide of
TCL commands). This script will write timing paths
in custom format as follow:

Start-point Endpoint launch_clock
capture_clock slack

Sample script is as follow named
SClk_to_CClk_paths.tcl

#file to store all the paths and override any
content of it
setfp [open "SClktoCClk_path_hold_0.05.txt" w
]
puts $fp "timing path report for setup and hold
violations"
close $fp

#procedure to write a custom report
proccustom_report { listOfPaths } {
setp ""
setfp [open "SClktoCClk_path_hold_0.05.txt" a]
set q [format {%-40s %-40s %-20s %-20s %7s}
"Startpoint" "Endpoint" "Launch Clock"
"Capture Clock" "Slack"]
puts $fp $q
puts $fp "\n"
foreach path $listOfPaths {
setstartpoint [get_property STARTPOINT_PIN
$path]
setstartclock [get_property
STARTPOINT_CLOCK $path]
set endpoint [get_property ENDPOINT_PIN
$path]
setendclock [get_property ENDPOINT_CLOCK
$path]
set slack [get_property SLACK $path]
set p [format {%-40s %-40s %-20s %-20s %7s}
$startpoint $endpoint $startclock $endclock
$slack]

335

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 5, July 2014.

www.ijiset.com
ISSN 2348 – 7968

puts $fp $p
}
puts $fp "\n"
puts $fp "\n"
close $fp
}

#getting timing paths in a variable
set paths [get_timing_path -from SClk -to CClk -
slack_lesser_than -0.5 -max_path 10000 -hold]
custom_report $paths

Above scripts finds timing paths from SCLK to
CCLK and write details in custom format for each of
them. As shown in script, we have written a TCL

procedure with name custom_report with argument
List of paths. In list variable paths, we have added all
the timing paths with hold violation lesser than -0.5.
If number of path exceeds number 10000, then it will
add paths with more negative paths to the list
variable.

This script is very useful when timing violations are
on paths from same vector register to another group
of vector register. Custom reports make easy to
analyses these timing paths. In this way, we can write
small scripts to get timing paths to/from a clock or to
an endpoint.

3 Strategies for timing Enhancement

3.1 Implementation strategies
Implementation in Vivado tool has different
implementation strategies [iii] which use different
algorithms for placement and routing. Those
strategies can improve either of area, performance,
congestion, and power. For achieving timing closure,
we tried all strategies of implementation to improve
performance.

Post route timing results of these different strategies
are given in Table 1. Here, timing parameters are

WNS (Worst Negative Slack), TNS (Total Negative
Slack), WHS (Worst Hold Slack), and THS (Total
Hold Slack).

 Comparing timing results in table 1, we conclude
that in case of our design performance exploreSLLs
gives better result. So, we have preferred
performance exploreSLLs strategy for further
implementation runs.

Table 1 Timing Summary of Different implementation strategies

Timing parameters

Strategy Implementation

WNS
(ns)

TNS (ns) WHS
(ns)

THS (ns)

Performance_Explore -9.6 -14489 -6.8 -20384

Performance_RefinePlacement -14.9 -15930 -14.3 -11766

Performance_WLBlockPlacement -7.3 -3541 -7.5 -13102

Performance_WLBlockPlacementFanoutOpt -10.5 -13469 -7.3 -8039

Performance_LateBlockPlacement -9.7 -4512 -8.0 -20971

Performance_NetDelay_high -7.2 -3396 -7.4 -12738

Performance_NetDelay_medium -9.2 -18340 -4.7 -4558

Performance_NetDelay_low -9.5 -23901 -6.8 -8611

Performance_ExploreSLLs -6.7 -3390 -8.8 -11428

336

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 5, July 2014.

www.ijiset.com
ISSN 2348 – 7968

3.2 Synthesis strategies
While synthesizing design, we can optimize it for
area and/or timing (performance). We have
synthesized SAS Expander design using Precision
tool from Mentor Graphics. In precision, we can
trade off optimization for timing and area with
synthesis options compile_for_area,
compile_for_timing, and default it is balanced.

Initially, we were synthesizing design for area
optimization. Utilization of SAS Expander design has
75% post synthesis (67% post route). We had enough
safety margins on overall implementation on
utilization (area). We have synthesized design for
timing optimization, area optimization, and balanced
mode.

From results, we can conclude that using timing
optimization mode while synthesis improved timing
status to a great extent i.e. less violation
comparatively for area optimization. It caused to

increase utilization around 10% which is tolerable in
case of our design.

We were synthesizing design with 37MHz clock for
SClk (i.e 3Gb/s data rate). We did an experiment in
which we synthesized SAS Expander design at
75MHZ for SClk (6Gb/s data rate) i.e. at higher
frequency requirement. Synthesized netlist of design
implemented at 37MHz, which resulted in less timing
violation in Table 3 as well as it reduced LUT
utilization shown in chart 2.

Different synthesis strategies include area
optimization (area 37MHz, area 75MHz), timing
optimization (timing 37MHz, timing 75MHz), and
balanced. Chart 1, chart 2 summarizes resource
utilization for different synthesis strategy runs post
synthesis, post route respectively. Similarly, Table 2,
Table 3 summarizes timing result of different
synthesis strategy runs post synthesis, post route
respectively.

chart 1 Post Synthesis Utilization Summary

chart 2 Post Route Utilization Summary

0
10
20
30
40
50
60
70
80
90

Strategy

area 37 MHZ

area 75 MHZ

timing 37 MHZ

timing 75 MHZ

Balanced 0
10
20
30
40
50
60
70
80
90

Strategy

area 37 MHZ

area 75 MHZ

timing 37 MHZ

timing 75 MHZ

Balanced

337

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 5, July 2014.

www.ijiset.com
ISSN 2348 – 7968

Table 2 Post Synthesis Timing summary

Strategy WNS(ns) TNS(ns) WHS(ns) THS(ns)

area
37 MHZ

-6.052 -1410 -1.588 -19.25

area
75 MHZ

-6.052 -1410 -1.588 -19.25

timing
37 MHZ

-6.485 -1274 -1.588 -13.82

timing 75
MHZ

-6.485 -1274 -1.588 -13.64

balanced -8.85 -5168 -1.588 -19.35

Table 3 Post Route Timing summary

Strategy WNS TNS WHS THS

area
37 MHZ

-7.9 -3169 -4.6 -15015

area
75 MHZ

-7.9 -3169 -4.6 -15015

timing 37
MHZ

-7.3 -2352 -7.6 -11640

timing 75
MHZ

-6.6 -1548 -7.9 -9009

balanced -8.3 -6127 -6.9 -14106

4 Conclusion
Static Timing Analysis needs application of proper
constraints, generating timing reports, and checking
if timing met or not. Using TCL scripts helps to
speed up timing analysis. Using different strategies
while implementation and synthesis can improves
timing. Synthesizing design for timing optimization
results in improved performance at the cost of area.

5 Acknowledgments
Authors would like to acknowledge the help and
support of several people who have supported this
effort. Special thanks LSI India Research and
Development Pvt. Ltd. for giving opportunity to work
with them and manager Mohan Jindal and
Hrushikesh Vaidya at LSI for their valuable
suggestions.

6 References
[I]http://asic-soc.blogspot.in/2008/08/dynamic-vs-
static-timing-analysis.html

 [ii] Varghese, J.; Butts, M.; Batcheller, J.; "An
efficient logic emulation system,"

[iii] Implementation, Using Constraints, and TCL
scripting user guides for vivado.

[iv] LSI® 12Gb/s SAS/SATA Expander product brief

[v] www.xilinx.com

338

http://www.ijiset.com/

	1 Introduction
	2 Timing Analysis
	2.1 Timing constraints
	2.2 Timing Reports
	2.3 Custom Timing Report using TCL

	3 Strategies for timing Enhancement
	3.1 Implementation strategies
	3.2 Synthesis strategies

	4 Conclusion
	5 Acknowledgments
	6 References

