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Abstract – Let G = (V,E) be a graph with p vertices and q edges. 
A Hetro-Cordial labeling   of a graph G with vertex set V is a 
bijection from V to {0, 1} such that each edge uv is assigned the 
label 0 if f(u) =f(v)  or 1 if f(u) ≠ f(v) with the condition that the 
number of  vertices  labeled with 0 and the number of vertices 
labeled with 1 differ by atmost 1 and the number of  edges 
labeled with 0 and the number of edges labeled with 1 differ by 
atmost 1. The graph that admits a Hetro-Cordial labeling is 
called a Hetro-Cordial graph (HeCG). In this paper, we  proved 
that Cycle related graphs Cycle Cn(n-odd), Double triangular 
snake C2(Pn) ,  D2(Cn), Globe Gl(n), CnʘK1 are Hetro-Cordial 
Graphs. 
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I.INTRODUCTION 

A graph G is a finite non-empty set of objects 
called vertices together with a set of unordered pairs of 
distinct vertices of G which is called edges. Each pair e = 
{uv} of vertices in E is called edges or a line of G. In this 
paper, we proved that Cycle related graphs Cycle Cn
(n-odd), Double triangular snake C2(Pn) , D2(Cn), Globe 
Gl(n), CnʘK1 are Hetro-Cordial graphs. For graph theory 
terminology, we follow [2] 

II.PRELIMINARIES

 Let G = (V,E) be a graph with p vertices and q edges. 
A Hetro-Cordial labeling of a graph    G with vertex set V 
is a bijection from V to {0, 1} such that each edge uv is 
assigned the label        0 if   f(u) =f(v) or 1 if f(u) ≠ f(v) 
with the condition that the number of vertices labeled 
with 0 and the number of vertices labeled with 1 differ by 
atmost 1 and the number of edges labeled with 0 and the 
number of edges labeled with 1 differ by atmost 1.  

 The graph that admits a Hetro-Cordial labeling is 
called a Hetro-Cordial graph (HeCG).       We proved that 
Cycle related graphs Cycle Cn(n-odd), Double triangular 
snake C2(Pn) , D2(Cn), Globe Gl(n), CnʘK1 are Hetro-
Cordial graphs. 

Definition 2.1 

 A closed path is called a cycle and a cycle of length n 
is denoted by Cn. 

Definition 2.2 

 Graph obtained from a path Pn,by joining each end 
vertices of an edge with two isolated vertex. It is denoted 
by C2(Pn). 

Definition 2.3 

 Let G be a connected graph. A graph constructed by 
taking two copies of G say G1 and G2 and joining each 
vertex u in G to the  neighbours  of  the corresponding 
vertex v in G2, that is for every vertex u in G1 there exists 
v in G2 such that N(u)=N(v). The resulting graph is 
known as shadow graph and it is denoted by D2(G). 

Definition 2.4 

 Globe is defined as the two isolated vertex are joined 
by n paths of  length 2. It is         denoted by G(n). 

Definition: 2.5 

  The corona G1ʘG2 of two graphs G1 and G2 is 
defined as the graph G obtained by           taking one copy 
of G1 (which has P1 points) and P1 copies of G2 and 
joining the ith point             of G1 to every point in the ith 

copy of G. 

III.MAIN RESULTS

Theorem:3.1 

 Cycle Cn (n-odd) is Hetro-Cordial Graph. 

Proof: 

` Let V(Cn) = {[ui : 1  ≤  i  ≤  n]} and 

 E(Cn) = {[(uiui+1)  : 1  ≤  i  ≤  n-1] ⋃ [(u1un)]}. 

Define  f : V(Cn)→{0,1}. 

Case: 1 

When n = 3, 

The labeling is, 
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Case: 2 

When   n >3, 

The vertex labeling are , 

f (ui)      = �0     i ≡ 0,1 mod 4
1     i ≡ 2,3 mod 4    1 ≤ i ≤ n

The induced edge labeling are, 

f*[(uiui+1)]    = �0     i ≡ 0 mod 2
1     i ≡ 1 mod 2    1  ≤  i  ≤  n-1

f*[(u1un)]      = �0     n ≡ 1 mod 4
1     n ≡ 3 mod 4  

Here,  v f (0) = v f (1)+1  for  n ≡3 mod 4, 

v f (1) = v f (0)+1 for  n ≡1 mod 4, 

e f (0) = ef (1)+1  for n ≡ 1 mod 4  and 

e f (1) = ef (0)+1  for n ≡ 3 mod 4. 

 Therefore, Cycle Cn satisfies the conditions  |v f (0) - 
v f (1) | ≤ 1 and | e f  (0) – e f (1) | ≤ 1. 

Hence,Cycle Cn (n-odd) is Hetro-Cordial. 

 For example,  Hetro-Cordial labeling of cycle C5 is 
shown in the  fig 3.2 

Theorem:3.3 

D2(Cn)  is Hetro-Cordial Graph. 

Proof: 

Let  V(D2(Cn)) ={[ui,vi : 1  ≤  i  ≤  n]} and 

  E(D2(Cn)) ={[(uiui+1) ⋃ (uivi+1) ⋃ (viui+1) ⋃ 
(vivi+1) : 1≤ i  ≤  n-1]  

⋃[(u1un)⋃(v1vn)⋃(u1vn)⋃(v1un)]}. 

Define  f : V(D2(Cn))→{0,1}. 

The vertex labeling are , 

f(ui)  = 0  1≤ i  ≤  n 

f(vi)  = 1  1 ≤ i ≤ n 

The induced edge labeling are, 

f*[(uiui+1)]  = 0 1 ≤ i ≤ n-1 

f*[(vivi+1)]  = 0 1 ≤ i ≤ n-1 

f*[(uivi+1)]  = 1 1≤ i ≤ n-1 

f*[(viui+1)]  = 1 1≤ i ≤ n-1 

f*[(u1un)]  = 0 

f*[(v1vn)]  = 0 

f*[(v1un)]  = 1 

f*[(u1vn)]  = 1 

Here,  v f (0) = v f (1) for all n and 

 e f (0) = e f (1)  for all n. 

 Therefore,  D2(Cn) satisfies the conditions |v f (0) - v f 
(1)| ≤1 and |e f (0) - e f (1)| ≤1. 

Hence, D2(Cn) is Hetro-Cordial. 

 For example,  Hetro-Cordial labeling of  D2(C5) and 
D2(C6)  are shown in the    fig 3.4 and    fig 3.5 
respectively. 

fig 3.2: C5 
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Theorem:3.6 

Globe Gl(n)  (n-even) is Hetro-Cordial Graph. 

Proof: 

Let  V(Gl(n)) ={[u,v,ui : 1≤i≤n]} and 

E(Gl(n)) = {[(uui) ⋃ (vui)  : 1≤i≤n]}. 

Define f : V(Gl(n))→{0,1}. 

The vertex labeling are , 

f(u) = 0 

f(v)  = 1 

f(ui) = 0 1  ≤  i  ≤  n
2
 

f(ui) = 1 n
2
+1  ≤  i  ≤  n 

The induced edge labeling are, 

f*[(uui)]   = 0    1  ≤  i  ≤  n
2
 

f*[(uui)]  =  1 n
2
+1  ≤  i  ≤  n 

f*[(vui)]  =  1 1  ≤  i  ≤  n
2
 

f*[(vui)]  =  0 n
2
+1  ≤  i  ≤  n 

Here, v f (0) = v f (1) for all n and 

 e f (0) = e f (1) for all n. 

 Therefore, Globe Gl(n) satisfies the conditions |v f (0) 
- v f (1)| ≤ 1 and |e f (0) - e f (1)| ≤ 1. 

Hence, Globe Gl(n)  n-even is Hetro-Cordial Graph. 

For example, Hetro-Cordial labeling of Globe Gl(4) 
is shown in the following fig 3.7 

Theorem:3.8 

Globe Gl(n)  n-odd is Hetro-Cordial. 

Proof: 

Let  V(Gl(n)) ={[u,v,ui : 1≤i≤n]} and 

E(Gl(n)) = {[(uui) ⋃ (vui)  : 1≤i≤n]}. 

Define f : V(Gl(n))→{0,1}. 

The vertex labeling are , 

f(u)  = 0 

f(v)  = 1 

f(ui)     = 0 1  ≤  i  ≤  n−1
2

 

f(ui)     = 1 n+1
2

 ≤  i  ≤  n 

The induced edge labeling  are, 

fig 3.4: D2(C5) 
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fig 3.5: D2(C6) 
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f*[(uui)]  = 0 1  ≤  i  ≤  n−1
2

 

f*[(uui)]  =  1 n+1
2

 ≤  i  ≤  n 

f*[(vui)]  =  1 1  ≤  i  ≤  n−1
2

 

f*[(vui)]  =  0 n+1
2

 ≤  i  ≤  n 

Here, v f (1) = v f (0)+1 for all n and 

 e f  (0) = e f (1) for all n. 

 Therefore, Globe Gl(n) satisfies the conditions 
| v f (0) - v f (1) | ≤ 1 and |e f (0) - e f (1) | ≤ 1. 

Hence, Globe Gl(n)  n-odd is Hetro-Cordial Graph. 

 For example, Hetro-Cordial labeling of Globe Gl(5) 
is shown in the following fig 3.9 

Theorem:3.10 

Double  triangular  snake  C2 (Pn) is a Hetro-Cordial 
Graph. 

Proof: 

Let  V(C2 (Pn)) ={[ui: 1≤i≤n] , [v i,wi : 1 ≤ i ≤ n-1 ]} 
and 

       E(C2 (Pn)) = {[(uivi) ⋃ (uiwi) ⋃ (ui+1vi) ⋃ 
(ui+1wi) ⋃(uiui+1):1≤  i ≤ n-1]}        

Define  f : V(C2 (Pn))→{0,1}. 

The vertex labeling  are , 

f(ui)  = �0     i ≡ 0,1 mod 4
1 ,   i ≡ 2,3 mod 4   1 ≤ i ≤ n 

f(vi)     = 0 1 ≤ i ≤ n-1 

f(wi     = 1 1 ≤ i ≤ n-1 

The induced edge labeling  are, 

f*[(uiui+1)]  =�1     i ≡ 1 mod 2
0     i ≡ 0 mod 2  1 ≤ i ≤ n − 1

f*[(uivi)]  =�1     i ≡ 2,3 mod 4
0    i ≡ 0,1 mod 4       1 ≤ i ≤ n -1

f*[(uiwi)]  =�1     i ≡ 0,1 mod 4
0    i ≡ 2,3 mod 4      1 ≤ i ≤ n − 1

f*[(ui+1vi)]  =�1    i ≡ 1,2 mod 4
0    i ≡ 0,3 mod 4       1 ≤ i ≤ n − 1

f*[(ui+1wi)] = �1     i ≡ 0,3 mod 4
0    i ≡ 1,2 mod 4       1 ≤ i ≤

n − 1 

 Therefore, Double  triangular  snake  C2(Pn) satisfies 
the conditions | v f  (0) - v f (1) | ≤ 1 and   | e f (0) - e f (1) | ≤ 
1. 

 Hence, Double  triangular  snake  C2(Pn)  is  a Hetro-
Cordial Graph.  

 For example, Hetro-Cordial labeling of  Double 
triangular  snake  C2(P5) and C2(P4) are shown in the 
following fig 3.11 and fig 3.12 respectively. 

 

 

 

fig  3.9: Gl(5) 
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fig 3.11: C2(P5) 
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fig 3.12: C2(P4) 
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Theorem:3.13 

CnʘK1  (n-even)  is a Hetro-Cordial Graph. 

Proof:  

Let  V(CnʘK1) ={[ui,vi : 1 ≤ i ≤ n]} and 

  E(CnʘK1) = {[(uiui+1):1 ≤ i ≤ n-1] ⋃ [(u1un)] 
⋃ [(uivi):1 ≤ i ≤ n]}. 

Define   f : V(CnʘK1)→{0,1}. 

The vertex labeling are , 

f(ui)  = �0     i ≡ 1 mod 2
1     i ≡ 0 mod 2  1 ≤ i ≤ n 

f(vi)  =  �0     i ≡ 1 mod 2
1     i ≡ 0 mod 2  1 ≤ i ≤ n 

The induced edge labeling  are, 

f*[(uiui+1)]  = 1 1 ≤ i ≤ n-1 

f*[(u1un)]  = 1 

f*[(uivi)]  = 0 1 ≤ i ≤ n 

Here, v f (0) = v f (1)  for all n  and 

 e f (0) = e f (1)   for all n. 

Therefore, CnʘK1 satisfies the conditions 
| v f (0) - v f (1) | ≤ 1 and | e f (0) - e f (1) | ≤ 1. 

Hence, CnʘK1 (n-even) is a Hetro-Cordial graph. 

 For example,  Hetro-Cordial labeling of C6ʘK1 is 
shown in the following fig 3.14 

Theorem:3.15 

CnʘK1  (n-odd)  is a Hetro-Cordial Graph. 

Proof:  

Let  V(CnʘK1) ={[ui,vi : 1 ≤ i ≤ n]} and 

  E(CnʘK1) = {[(uiui+1):1 ≤ i ≤ n-1] ⋃ [(u1un)] ⋃ 
[(uivi):1 ≤ i ≤ n]}. 

Define  f : V(CnʘK1)→{0,1}. 

The vertex labeling are , 

f(ui)  = �0     i ≡ 1 mod 2
1     i ≡ 0 mod 2  1 ≤ i ≤ n 

f(v1)  = 1 

f(vi)  = �0     i ≡ 1 mod 2
1     i ≡ 0 mod 2  2 ≤ i ≤ n 

The induced edge labeling are, 

f*[(uiui+1)]  = 1 1 ≤ i ≤ n-1 

f*[(u1un)]  = 0 

f*[(u1v1)] = 1 

f*[(uivi)]  = 0 2 ≤ i ≤ n 

Here, v f (0) = v f (1)  for all n  and 

 e f (0) = e f (1)   for all n. 

 Therefore, CnʘK1 satisfies the conditions 
| v f (0) - v f (1) | ≤ 1 and | e f (0) - e f (1) | ≤ 1. 

Hence, CnʘK1 (n-odd) is a Hetro-Cordial Graph. 

 For example,  Hetro-Cordial labeling of C5ʘK1 is 
shown in the following fig 3.16 
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fig 3.16: C5ʘK1 
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